
Current Topics in Hemoglobinopathies

Bruce R Haas, MS, LCGC 28-29 September 2015 bruce.r.haas@kp.org WHO-TIF MEETING ON THE MANAGEMENT OF HAEMOGLOBIN DISORDERS

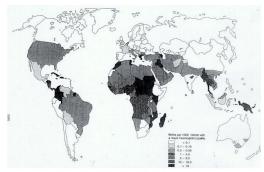


Figure: Global distribution of haemoglobin disorders, In terms of births of affected infants per 1000 births (WHO, 1996)

World Health Organization

Bulletin of the World Health Organization

Global epidemiology of haemoglobin disorders and derived service indicators

Bernadette Modell, Matthew Darlison

Volume 86, Number 6, June 2008, 480-487

Table 1. Estimated prevalences of carriers of haemoglobin gene variants and affected conceptions

		Demography	2003		% of the	e populationcar	ying	Affected	conceptions(per 1	1000)	Affected
WHO region	Population (millions)	CrudeBirthrate	Annual births (1000s)	Under-5 mortality rate	Significant variant ^e	α ^ë thalassaemia ⁵	Any variant ⁱ	Sickle cell disorders ^d	Thalassaemias ^a	Total	births (% of under- 5 mortality)
African	586	39.0	22 895	★168	18.2	41.2	44.4	10.68	0.07	10.74	6.4
American	853	19.5	16 609	27	3.0	4.8	7.5	0.49	0.06	0.54	2.0
Eastern Mediterranean	573	29.3	16 798	★108	4.4	19.0	21.7	0.84	0.70	1.54	1.4
European	879	11.9	10 459	25	1.1	2.3	3.3	0.07	0.13	0.20	0.8
South-east Asian	1 564	24.4	38 139	★ 83	6.6	44.6	45.5	0.68	0.66	1.34	1.6
Western Pacific	1 761	13.6	23 914	38	3.2	10.3	13.2	0.00	0.76	0.76	2.0
World	6 217	20.7	128 814	🗙 81	5.2	20.7	24.0	2.28	0.46	2.73	3.4

Significant variants include Hb S, Hb C, Hb E, Hb D etc. β thalassaemia, off thalassaemia % of thalassaemia includes heterozygous and homozygous of thalassaemia. # Allows for (1) coincidence of α and β variants, and (2) harmless combinations of β variants. # Sicile-

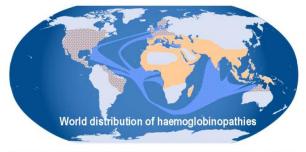


Figure 1 The world distribution of haemoglobinopathies overlaps the geographic distribution of malaria. The prevalence has increased in previously non-endemic areas as a consequence of historical and recent immigration flows, dave-trade, trading activities and colorization. In all these regions there is a high prevalence of a thalassaemia. It is believed that carriers of a thalassaemia are protected against malaria and that natural selection is responsible for elevating and maintaining their gene frequencies.

Harteveld and Higgs Orphanet Journal of Rare Diseases 2010, 5:13

How malaria escapes effective immunological responses

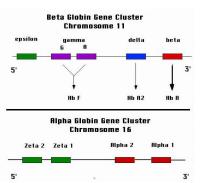
P falciparum exports PfEMP1 proteins and concentrate them in knob-like protrusions on the surface of their host RBCs. This enables a large mass of parasitized RBCs to sequester in venous microvessels thereby avoiding splenic clearance from the bloodstream.

Silent alpha-thal carriers show an 18% reduction in PfEMP1 on the surface of the parasitized erythrocyte relative to wild type RBC's. Hemoglobin H disease carriers show a 43% reduction.

Data suggests that α -globin deletions also ameliorate the pro-inflammatory effects of cytoadherence.

Figure 3. Three-dimensional photograph of normal red cells aggregating around a malaria-infected red

Cold Spring Harb Perspect Med 2012;2:a011692


Epidemiology

- Estimations suggest that in excess 300 000 children are born each year with a severe inherited disorder of hemoglobin
- Approximately 80 % occur in low- or middle-income countries
- These pathologies present an uneven distribution in highfrequency populations
- Complex population genetics
- The epidemiological burden is still unknown

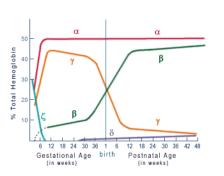
Weatherall D.J. Blood.2010. 115: 4431-4336

Hemoglobin (Hgb) Components

- Epsilon and Zeta-globins are found in embryonic Hgb's
- Fetal Hgb (Hb F) comprises two alpha-globin chains and two gamma-globin chains.
- After the 1st year of age the Hgb that accounts for 96% of the hemoglobin of an RBC is typically Hb A--two alpha-globin chains and two beta-globin chains.
- A post-natal Hgb that typically comprises not more than 3.5% of the total RBC hemoglobin is Hb A2—two alpha chains and two delta-globin chains

Abnormalities of hemoglobin

Encompass all genetic diseases of hemoglobin


✓ Qualitative abnormalities:

- Structural abnormalities, mutation or substitution of one or more amino acids, often leading to a charge modification of the hemoglobin molecule
- Frequent Hb variants: β -globin : **S**, **C**, **D**^{Punjab}, **E**
- Rare variants : α , δ chains
- ✓ Quantitative abnormalities: Thalassemias
 - Synthesis or regulation abnormalities : ↓ β-globin ⇒ β Thalassemias
 ↓ α-globin ⇒ α Thalassemias
 ↓ δβ-globins ⇒ δβ Thalassemias
 ↓
- Combinations: people can inherit <u>both</u> a qualitative and a quantitative abnormality

Clinical symptoms Highly variable clinical manifestations ranging from mild hypochromic anemia to severe anemia with multiorgan involvement. Lifelong transfusion is used as supportive treatment in cases of sever anemia

Globin production as a function of gestational age

The differences as to when alpha-globin and beta-globin production becomes prominent explains why a fetus with no working copy of the alphaglobin gene is in trouble by the 2nd trimester of gestation. In contrast, the fetus with no working copy of the beta-globin gene* is in difficulty postnatally once the gamma-globin production decreases.

World Health Organization

Bulletin of the World Health Organization

Global epidemiology of haemoglobin disorders and derived service indicators

Bernadette Modell, Matthew Darlison Volume 86, Number 6, June 2008, 480-487

Table 3. Estimated reach of treatment for β thalassaemia in each WHO region ij

	Estimated annualbirths β thalassaemias Transfusion- Total dependent			Transfusion			Adequate iron chelation		Inadequate or no iron chelation	
WHO region			% of transfus Annual no. depend starting patier transfusion transfu		sfusion- endent Annualdeaths tients because not sfused transfused		% with chelation	No. with chelation	No. of patients	Annual deaths due to iron overload
African	1 386	1 278	35	2.7	1 243	-	★_	-	-	-
American	341	255	134	52.4	121	2 750	58	1 604	1 146	57
Eastern Mediterranean	9 914	9 053	1 610	★17.8	7 443	39 700	27	10 818	28 882	1 444
European	1 019	920	140	×15.5	780	16 230	91	14 754	1 476	74
South-east Asian	20 420	9 983	962	★ 9.6	9 021	35 500	* 19	6 621	28 879	1 444
WesternPacific	7 538	4 022	108	★ 2.7	3 914	3 450	44	1 504	1 946	97
World	40 618	25 511	2 989	11.7	22 522	97 630	39	37 866	69 764	2 988

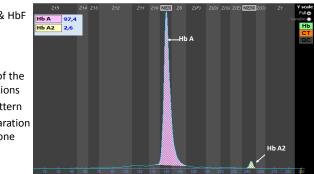
- Objective #1 To develop an understanding of the advantages of Capillary Electrophoresis over other technologies in assessing hemoglobin
- Objective #2 To review the effect of alpha globin deletions on HbE and HbA2 levels
- Objective #3 To acquire knowledge regarding globin variants not routinely identified by hospital laboratories

Objective #1 <u>To develop an understanding of the</u> <u>advantages of Capillary Electrophoresis</u> <u>over other technologies in assessing</u> <u>hemoglobin</u>

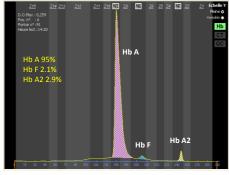
Hemoglobin Testing

Methods available for Hemoglobin analysis

- Gel electrophoresis (alkaline, acid)
- Methods for detection of specific hemoglobins (sickling test for HbS. isopropanol denaturation for unstable hemoglobins)
- IsoElectric Focusing (IEF) on gel (time-consuming; requires experienced interpreter; qualitative)
- HPLC
- Capillary electrophoresis (CE)



Due to the existence of more than 1000 variants and that some rare variants co-migrate with normal hemoglobins and/or common pathological variants, several methods must be used in combination for diagnosis.



Hemoglobin electrophoresis on CE systems

- HbA, HbA₂ & HbF are detected automatically - Relative quantitation of the different fractions - Centered pattern - Variant separation in a specific zone (Z1 to Z15)

21 yr old pregnant woman: Hgb 13.1 g/dl, Hct 38.6%

Normal pattern, Hb F slightly increased due to the pregnancy

Comparison of HPLC to Capillary Electrophoresis

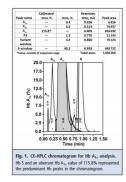
- HPLC HPLC cannot separate HbE and HbA2 or E and Hb Lepore
- In presence of HbS, HbA2 is falsely elevated given HbS1C elutes with HbA2. The common delta-globin variant in Blacks HbA2' also elutes with HbS
- 个HbA1C makes HbF quantification inaccurate
- Detection of low levels of Hb Barts is unreliable and unreproducible using HPLC
- ↑ bilirubin may mascaraed as HbBarts
- Using HPLC, Hb New York cannot be differentiated from HbA. They elute together.

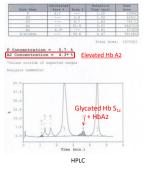
Capillary Electrophoresis

- HbE and Lepore can easily be differentiated from HbA2
- HbA2 is accurate regardless HbS presence or absence
- Despite glycation, HbA1C migrates with HbA and HbS1C migrates with HbS
- Uses higher voltage so run times are shorter
- Smaller sample size thus better for neonatal/pediatric cases
- ~10,000 samples per autómated run
- More operator friendly

		Split Up/Down 🚹 Split LeftRight 😨 Detai	ch vendow					
0/16/2013 03:54 PM HEMO	IGLOBIN ELECTROPHO	ORESIS Abnormal						
Back 🙋 🎒 🖺 🌸 •								
Results		HEMOG	HEMOGLOBIN ELECTROPHORESIS (Order 5036					
esult Information		- 1 00						
Status		Provider Status						
Abnormal Final result (10/17/2013 9:33 AM)		M) Reviewed						
To see results older that	in 5 years, please use	Chart Review or Results Review.						
Status: Final result Visil	ble to patient: This re-	sult is viewable by the patient in kp.org Dx: SUPERVISION	Next appt: 0	7/24/2015 at 03: GRAVIDA PREG	15 PM 🙁			
Status: Final result Visil in Obstetrics, Gynecology	ble to patient: This re	Dx: SUPERVISION	. Next appt: 0 NORMAL MULTI	7/24/2015 at 03: GRAVIDA PREG				
Status: Final result Visil in Obstetrics, Gynecology lewer results are availabl	ble to patient: This re	Dx: SUPERVISION ow. 1yr ago	I. Next appt: 0 NORMAL MULTI	7/24/2015 at 03: GRAVIDA PREG				
Status: Final result Visil in Obstetrics, Gynecology	ble to patient: This real le. Click to view them no	DX: SUPERVISION	Next appt: 0	GRAVIDA PREG				
in Obstetrics, Gynecology Newer results are availabl HGB PATTERN, BLD HEMOGLOBIN VARIAN %	ble to patient: This rev le. Click to view them no Ref Range T	Dx: SUPERVISION ow. 1yr ago (HGB AE (A) SEE NOTE (A)	. Next appt: 0 NORMAL MULTI	GRAVIDA PREG	лори — — — — — — — — — — — — — — — — — — —			
Status: Final result Visil in Obstetrics, Gynecology lewer results are availabl HGB PATTERN, BLD HEMOGLOBIN VARIAN	ble to patient: This rea le. Click to view them no Ref Range T 0.0 - 2.0 %	Dx: SUPERVISION ow. 1yr ago (HGB AE (A))	. Next app: 0 NORMAL MULTI	Comments	лори — — — — — — — — — — — — — — — — — — —			
Status: Final result Visil in Obsetrics, Gynecology lewer results are availabl HGB PATTERN, BLD HEMOGLOBIN VARIAN' % HGB F %, BLOOD, ELECTROPHORESIS HGB A2 %, BLOOD, ELECTROPHORESIS	ble to patient: This rev le. Click to view them no Ref Range T	Dx: SUPERVISION ov. 1yr ago (HGB AE (A) (SEE NOTE (A) 0.4 SEE NOTE	. Next appt: 0 NORMAL MULTI	Comments	ints			
Status: Final result Visil in Obstetrics, Gynecology Newer results are availabl HGB PATTERN, BLD HEMOGLOBIN VARIAN % HGB F %, BLOOD, ELECTROPHORE SIS HGB A2 %, BLOOD,	ble to patient: This rea le. Click to view them no Ref Range T 0.0 - 2.0 %	ow. 1yr ago HGB AE (A) SEE NOTE (A) 0.4	I. Next app: 0 NORMAL MULTI	GRAVIDA PREG Comments	ints			
Status: Final result Visil in Obsetrics, Gynecology lewer results are availabl HGB PATTERN, BLD HEMOGLOBIN VARIAN' % HGB F %, BLOOD, ELECTROPHORESIS HGB A2 %, BLOOD, ELECTROPHORESIS	blo to patient: This re- le. Click to view them ni Ref Range 0.0 - 2.0 % 0.0 - 3.3	Dx: SUPERVISION ov. 1yr ago (HGB AE (A) (SEE NOTE (A) 0.4 SEE NOTE	Normal MULT	GRAVIDA PREG Comments See comme See comme See comme	ints			

HPLC cannot separate HbE and HbA2

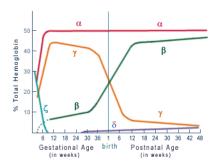

Sickle cell

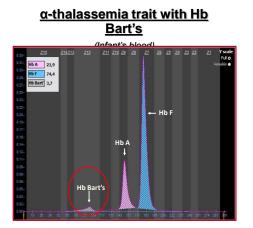

Using HPLC, when HbS is present HbA2 is falsely elevated given HbS1C elutes with HbA2

- HbA1C is produced by nonenzymatic addition of a glucose molecule to the N-terminal valine residue of the β -globin chain
- This glycation changes β-globin's structure and decreases the positive charge of HbA
- HbS1C is also produced by adding a glucose molecule to the N-terminal valine residue of the βs-globin chain

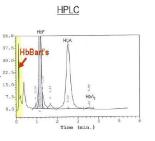
Sofronescu, Williams, et al., Clin Chem, 57(2) 153-7, 2011

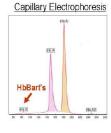
In contrast to HPLC, CE has no interference of glycated Hb S1c on the Hb A2 level




Hb A 56.8 Hb F 2.2 Hb S 38.4 Hb A2 2.6 Accurate Hb A measuremer Hb AZ

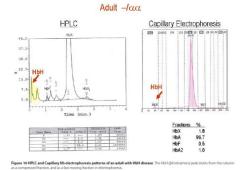
CAPILLARY ELECTROPHORESIS >No risk of falsely elevated Hb A2 with CE technologies in case of Hb S presence


Consequences of alpha-thalassemia


With a relative shortage of α -globin chains, γ -globins form a tetramer named Hb Barts. If the α -globin chains are more significantly scarce the β -globins form a tetramer named Hb H. These homotetramers do not deliver oxygen.

new born --/aa

Peak Name	Calibratac Area h	Ares 2	Ratention 71no (nin)	Peak
Unknown		0.0	0.94	0015
F	43.6*		1,15	486314
P2		4.1	1.29	46902
P3		2.1	1.65	23016
Ao		49.2	2.52	557316
R2	0.97		3.55	10497



59.6

0.5

HbF

HbA2

HbH inclusions can be seen when three alpha-globin genes are deleted.

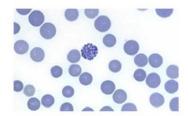


Figure 13 An inclusion body positive cell seen in Brilliant Cresyl Blue stained red cells of a d^o-thalassemia carrier. Inclusion Bodies are B4-tetrames precipitating on the red cell membrane, which damages the membrane and induces haemolysis. HbH is unstable and inclusion body positive cells are more difficult to find in older blood samples. The number of inclusion body cells seen after staining is much lower in d^o-thalassaemia carriers than in patients with HbH disease (1 in 5-10 fields versus several perfield at 1000x microscopic maginflaction).

Hemoglobin New York

HBB c.341T>A aka Val113Glu

 HOME
 ARTICLES & MULTIMEDIA ISSUES SPECIALITES & TOPICS FOR AUTHORS

 construction
 Construction
 Construction
 Construction
 Construction

 A Novel
 Sickling
 Hemoglobinopathy
 Network
 Network
 Construction

 N Endul Med 2011
 SS 1546-15461 October 20
 2011 (DOI: 10.1006/FLME 1104115
 Construction
 Construction

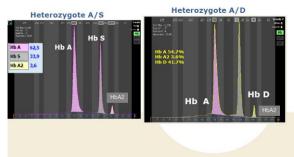
Share: 🛃 🐋 🥦

- 2nd most common β-globin variant among those Americans of Chinese ancestry
- Using HPLC, Hb New York elutes with HbA
- Hb New York has been found in combination with β-thalassemia and HbE with no clinical consequence
- Sickle crises, splenic infarct, acute chest syndrome reported in compound heterozygotes for HbS / Hb New York

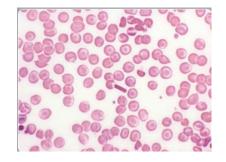
HPLC Disadvantages

- HPLC cannot separate HbE and HbA2
- In presence of HbS, HbA2 is elevated due to HbS1C
 - **↑**HbA1C makes HbF quantification inaccurate
 - HPLC's detection of low levels of Hb Barts is unreliable and unreproducible.
 - ↑ bilirubin may mascaraed as Hb Barts

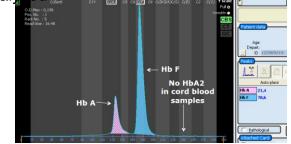
Is Capillary Electrophoresis a suitable tool for Hemoglobinopathy diagnosis?

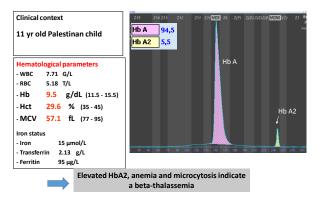

©Requirements for a good method of Hemoglobinopathy diagnosis:

- ✓ Accurate and precise separation of hemoglobin types, together with reliable quantitation, are essential for differential diagnosis of diseases.
- ✓Ability to separate an quantitate Hb A2, Hb F, Hb H, Hb Barts, HbS, HbC, HbD and HbE which are important parameter requires for diagnosis of thalassemias and hemoglobinopathies


- Capillary electrophoresis separates ions based on their electrophoretic mobility with the use of an applied voltage.
- The electrophoretic mobility is dependent upon the charge of the molecule, the viscosity, and the atom's radius.
- If two ions are the same size, the one with greater charge will move the fastest.
- For ions of the same charge, the smaller particle has less friction and overall faster migration rate.
- Capillary electrophoresis is used most because it gives faster results and provides high resolution separation.

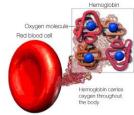
- Capillary electrophoresis separates ions based on their electrophoretic mobility with the use of an applied voltage.
- The electrophoretic mobility is dependent upon the charge of the molecule, the viscosity, and the atom's radius.
- If two ions are the same size, the one with greater charge will move the fastest.
- For ions of the same charge, the smaller particle has less friction and overall faster migration rate.
- Capillary electrophoresis is used because it gives faster results and provides high resolution separation.


Major variants


HbC crystal

CE is able to use a small aliquot of blood so that even an umbilical cord sample can be analyzed

<u>β-thalassemia trait</u>

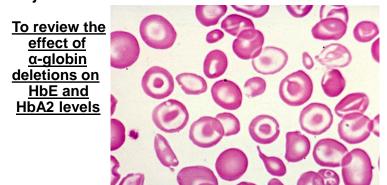

Advantages of CE

- 1. Allows clear separation of HbC, HbE, and Lepore from A2
- 2. Migration difference between HbS and HbD enabling more accurate measurements
- 3. A perfect focalization of HbF between HbA and HbS allowing precise quantification of F
- 4. A very good focalization of HbA2 allowing automatic identification and quantification
- 5. Excellent separation of A2 variants
- 6. CE has the fewest number of variants that can be confused with the most common variants HbS, HbC, and HbE [American Society of Pathology, 2011]

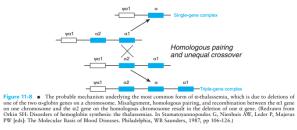
100 CO.		y Program r eening		Summary	Repor	t	Printed O	Number of	5 10:23:00 Al Page: Case(s):
Home Faci	lity: OA	к					Dow	nloaded On:	8/27/201
HC Ethnicity:	Filipino/Ph	ilippine							
HC Race: Asi	an				Ferritin:				
Order Date	FAC	E4Date	TestCode	Test Name	Reading	Res Unit	Out Range	Text	N. S.
8/21/2015	OAK	8/22/2015	2000020	WBC	9.0	KAL.			
8/21/2015	OAK	8/22/2015	2000040	RBC	4.94	M/aL			
8/21/2015	OAK	8/22/2015	2000050	HEMOGLOBIN	11,5	g/dL		_	/
8/21/2015	OAK	8/22/2015	2000080	HEMATOCRIT	35.6	2		\sim	
8/21/2015	OAK	8/22/2015	2000100	MCV	72	fL	L		
8/21/2015	OAK	8/22/2015	2000150	RDW	15.7	Z.			
8/21/2015	OAK	8/22/2015	2000160	PLATELET C	321	K/uL			
8/22/2015	OAK	8/22/2015	1000794	HSEPROF	HEB AA				
8/22/2015	OAK	8/22/2015	1000820	FERRITIN	224	ng/mL			
8/22/2015	OAK	8/22/2015	1001135	HGB F	12	z			-
8/22/2015	OAK	8/22/2015	3001136	HGENPENTER	SEE		treit,	consistent with the	a Thalasserria
8/22/2015	OAK	8/22/2015	1001150	HOB AZ	5.3	2.	н		
8/22/2015	OAK	8/22/2015	1410000	HGB A	93.5	2			

Information required for interpretation

- Correct interpretation of a result requires both hemoglobin electrophoresis profile and other blood indices & information:
 - Hgb, Hct, mean red cell volume (MCV), mean corpuscular hemoglobin (MCH) etc. to assess anemia, microcytosis, and/or hypochromia
 - Iron status (in particular for the decrease of Hb A2 and MCV in iron deficiency)
 - Patient's age, geographical /ethnic origin and family history
 - Transfusion history of the patient



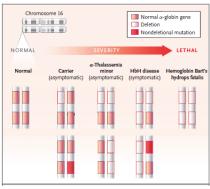
	ital Sci icility: OA	5	Case	Summar	y Repo	rt	Number of Case(Downloaded On: 8/27/3			
HC Ethnicit		nic/Non Latino			Ferritin:					
8/21/2015	OAK	8/21/2015	1001135	HGB F	1.8	2				
8/21/2015	OAK	8/21/2015	1001136	HGBNPINTER	SEE			If no transfusion, pattern consistant with Hanoglobin 5 Trait with Iron Deficiency and/or an underlying Alpha Tholossemia gene deletion.		
8/21/2015	OAK	8/21/2015	1001150	HGB AZ	3.4	2	н			
8/21/2015	OAK	8/21/2015	1410000	Н6В А	60.6	2,				
8/21/2015	OAK	8/21/2015	1410001	H68 5	34.2	76	н			
8/21/2015	OAK	8/21/2015	2000020	WBC	70	K/dL				
8/21/2015	OAK	8/21/2015	2000040	RBC	4.21	M/aL				
8/21/2015	OAK	8/21/2015	2000060	HEMOGLOBIN	11.5	g/dL				
8/21/2015	OAK	8/21/2015	2000080	HEMATOCRIT	33.0	7,	L			
8/21/2015	OAK	8/21/2015	2000100	MCV	78	fL.	L			
8/21/2015	OAK	8/21/2015	2000150	RDW	13.4	2.				
8/21/2015	OAK	8/21/2015	2000160	PLATELET C	253	K/uL				
8/23/2015	OAK	8/21/2015	2000020	WBC	8.9	K/uL				
8/23/2015	OAK	8/21/2015	2000040	RBC	4.29	M/sL				
8/23/2015	OAK	8/21/2015	2000060	HEMOGLOBIN	11,7	g/dL				
8/23/2015	OAK	8/21/2015	2000080	HEMATOCRIT	33,1	2	L			
8/23/2015	DAK	8/21/2015	2000100	MCV	77	fL	Ľ			
8/23/2015	OAK	8/21/2015	2000150	ROW	13.3	X,				


A 13 /001E 10 33 00 U

......

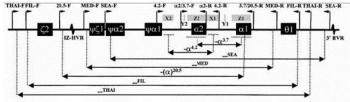
Objective #2

Alpha-globin Deletions account for the majority of Alpha Thalassemias



Non-Allelic Homologous Recombination

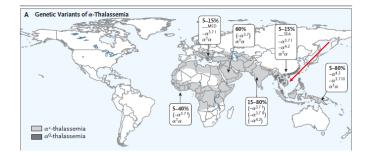
Thompson & Thompson Genetics in Medicine, 2007


Alpha-Thalassemias

The number of working copies of alpha-globin genes that are present in a given person is typically four. But there are individuals with more than four and those with less. Whenever less, this is a type of alphathalassemia.

NEJM 371: 1909, 2014

Common Alpha-globin Deletions

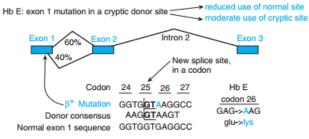


Schematic representation of the a-globin gene cluster, indicating extents of the 7 deletions and relative positions of the primers (except for the control LISI-F and LISI-R primers, which are located on a different chromosome). Locations of X, Y, and Z sequence homology boxes and hypervariable regions (HVRs) are also shown.

Cerner | Clinical Bioinformatics Ontology www.cerner.com

Review α-globin deletion locations

The NEW ENGLAND JOURNAL of MEDICINE



α-Thalassemia major Hydrops Fetalis

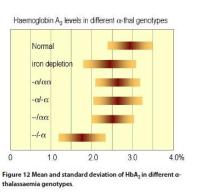
<u>**HbE** is a qualitative beta-globin</u> variant that is also thalassemic

Mutation enhancing a cryptic splice donor site in an exon

Thompson & Thompson Genetics in Medicine, 2007

E trait: The % HbE lowers as the number of α -globin genes present goes down

<u>α-Genotype</u>	HbE%#	MCV [#]	n	Notes
αα/αα	29.2%	78.2	80	
-α/αα	27.5%	81.2	51	Silent carriers without HbE typically have MCV between 77 and 82
/αα	21.4%	69.5	21	
-α /-α	20.1%	73.9	9	
/-α	14.2%	54	18	


Medians HbA₂% is typically $\leq 4.3\%$

> Ann Hematol (2003) 82: 612-616

Prenational Prenat			Case :	Summary	Repor	t.			Page: 1 lumber of Case(s): 1 ided On: 8/27/2015
IC Ethnicity:									
HC Roce: Ot	her				Ferritin:				
8/21/2015	OAK	8/22/2015	2000020	WBC	10.1	K/wL			
8/21/2015	OAK	8/22/2015	2000040	RBC	4,18	N/d.		*	
8/21/2015	OAK	8/22/2015	2000060	HEMOGLOBIN	11,2	9/dL	L		
8/21/2015	OAK	8/22/2015	2000080	HEMATOCRIT	32.9	2	L		
8/21/2015	OAK	8/22/2015	2000100	MCV	79	fL	L		
8/21/2015	OAK	8/22/2015	2000150	RDW	13.5	T.			
8/21/2015	OAK	8/22/2015	2000160	PLATELET C	330	K/uL			
8/22/2015	OAK	8/22/2015	1000794	HSBPROF	H68 AE		•	/	
8/22/2015	OAK	8/22/2015	1000820	FERRITIN	210	rg/nL	~		
8/22/2015	OAK	8/22/2015	1001135	HGB F	2.3	×.	н		
8/22/2015	OAK	8/22/2015	1001136	HGENPENTER	560			Herroglobin E	fusion, pattern consistent with Trait with Iron Deficiency derlying Alpha Thalassemia
8/22/2015	OAK	8/22/2015	1001150	HGB AZ	4.0	2	н		ygotes have higher is of HbA2 than Hb AA
8/22/2015	OAK	8/22/2015	1001150	HGB A2	4.0	ž	н		ers, if HbE is <30% an to thalassemia is unlikely.
8/22/2015	OAK	8/22/2015	1410000	HS8 A	69.7	7.		-	•
8/22/2015	OAK	8/22/2015	1410003	HGB F	24.0	7.	н		

<u>The effect of α-</u> <u>globin deletions on</u> <u>HbA2 %</u>:

 α-globin deletions
 lower the HbA2%.
 The % A2 lowers as
 the number of αglobin genes
 present lowers

Harteveld and Higgs Orphanet Journal of Rare Diseases 2010, 5:13

HbA2: The % HbA2 lowers slightly as the number of α-globin genes present goes down

<u>α-Genotype</u>	HbA ₂ % [#]	n	Ferritin	Notes
αα/αα	$2.57 \pm 0.23\%^{*}$	107 ්	≥ 30 µg/L	
-α ^{-3.7} /-α ^{-3.7}	$2.44 \pm 0.20\%^{*}$	65 🖒	≥ 30 µg/L	
	2.48 ± 0.25%@	307 ♀	≥ 30 µg/L	^
	2.38 ± 0.25%	123 ♀	≥ 15 but	^
	2.38 ± 0.23%	129¥	<30 μg/L	
	2.31 ± 0.23% [@]	75 🌳	< 15 µg/L	

Means ± SD * P < 0.0001 @ P < 0.0001 ^ P = 0.01 ISRN Hematology, 2013, ID 858294 http://dx.doi.org/10.1155/2013/858294

Hb Constant Spring, $-\alpha_{3.7}$ del and $\delta\beta$ -thal trait in a 33 y.o. male of Chinese ancestry

Malaysian J Pathol 2012 34(1): 57-62

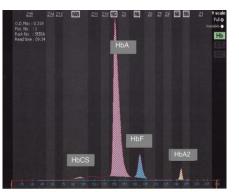


FIG. 1: Capillary electrophoresis analysis showing presence of Hb CS peak.

Objective #3

<u>To acquire knowledge regarding globin</u> <u>variants not routinely identified by</u> <u>hospital laboratories.</u>

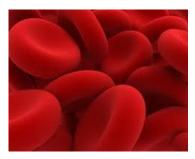
polypeptide molecule

Why are globin variants complicated?

· Sheer number

http://globin.bx.psu.edu/cgi-bin/hbvar/query_vars3

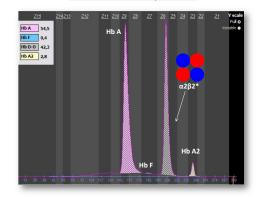
HbVar: A database of Human Hemoglobin Variants and Thalassemias tallies:

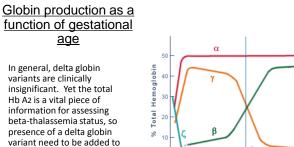

- 418 α2 variants
- 331 α1 variants
- 855 β variants
- 111 δ variants
- Patient ethnicity, globin variant stability, and status of the remaining loci need to be considered when evaluating presence of a variant
- · Also important in interpretation is the % variant out of the total hemoglobin
- While most do not, several variants have thalassemic properties: Hb E, Hb Lepore, Hb Constant Spring, and Hb Quong Sze

bVar: A database of Human Hemoglobin '	Variants and Thalassen	iias
story page serv history		
1. chain in (delta)	(111 variants)	
2. chain in (alpha2)	(418 variants)	
3. chain in (beta)	(855 variants)	
11. name like 'Hb G-Philadelphia '	(1 variants)	
12. name like 'Hb Evanston'	(1 variants)	
14. chain in (alpha1)	(331 variants)	
17. name like 'Quong Sze' AND chain in (alpha2)	(2 variants)	u chai
22. name like 'Constant Spring'	(1 variants)	
27. category = Hb variants AND name like 'New York' AND ch	ain in (beta) (1 variants)	
tions * Display results for query display format * Summary table © Page display © UCSC Genome Bi Text displays © Tab-separated text © Protein variant fasta file © Sim		
Variants that are in both queries v and v Variants that are in deter query v e v Variants that are in query v Bdit the description of query v Delete selected queries from history		red blood cell } chain <

Go

HbVar: A database of Human Hemoglobin Variants and Thalassemias


Number of variants...



http://globin.bx.psu.edu/cgi-bin/hbvar/query_vars3 HbVar: A database of Human Hemoglobin Variants & Thalassemias: 111 δ variants

Name	Mutation	Mutation, HGVS nomenclatur
-77 (T->C) delta (0 or + unclear)	delta nt -77 T>C	HBD:c127T>C
-76 (A->T) delta0	delta nt -76 A>T	HBD:c126A>T
-65 (A->G) delta+	delta nt -65 A>G	HBD:c-115A>G
-55 (T-=C) delta+	delta nt -55 T>C	HBD:c105T>C
-36 (C->A): probably delta+	delta nt -36 C>A	HBD:c-86C>A
-31 (A->0) delta+	delta nt −31 A>G	HBD:c81A>G
-30 (T->C): delta+	delta nt -30 T>C	HBD:c80T>C
HBD c.1 G>A	delta Initiation codon Met>lle	HBD:c.3G>A
Hb A2: Niigata	delta 1(NA1) Val>Ala	HBD:c.5T>C
Hb A2 codon 2 (CAT-AAT)	delta 2(NA2) His>Asn	HBD:c.7C>A
Hb A2-Catania	delta 2(NA2) His>Leu	HBD:c.8A>T
Hb A2-Sphakia	delta 2(NA2) His>Arg	HBD:c.8A>G
Codon 4 (ACT->ATT) delta+	delta 4(A1) Thr⊃Ile	HBD:c.14C>T
Hb A2-Acacias	delta 4(A1) Thr>Ser	HBD:c.14C>G
Hb A2-Ramallah	delta 6(A3) Glu>Glu	HBD:c.19G>C
Hb A2-Udine	delta 7(A4) Glu>Ala	HBD:c.23A>C
Hb A2-Pordenone	delta 7(A4) Glu>Asp	HBD:c.24G>C
Hb A2-Toranomon	delta 8(A5) Lys>Glu	HBD:c.25A>G
Hb A2-Pylos	delta 11(A8) Val>Gly	HBD:c.35T>G
Hb A2:NYU	delta 12(A9) Asn>Lys	HBD:c.39T>A
Hb A2-MUMC	delta 13(A10) Ala>Asp	HBD:c:41C>A
Hb A2-Saint-Etienne	delta 14(A11) Leu>Pro	HBD:c.44T>C
Hb A2' or Hb B2	delta 16(A13) Gly>Arg	HBD:c.49G>C
Hb As-Roosevelt	delta 20(B2) Val>Glu	HBD:c.62T>A

variant of the β chain

α

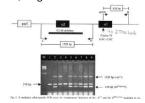
(in weeks)

Although CE has the tewest number of variants that can be confused with the common variants...

it is not a panacea

Order Date	FAC	E4Date	TestCode	Test Name	Reading	Res Unit	Out Range	Text
9/4/2015	ELG	9/4/2015	1000794	HGBPROF	HGB AD		*	
9/4/2015	ELG	9/4/2015	1000820	FERRITIN	8	ng/mL	L	
9/4/2015	EL <i>G</i>	9/4/2015	1001135	HGB F	<1.0	7.		
9/4/2015	ELØ	9/4/2015	1001136	HGBNPINTER	SEE			If no transfusion, pattern consistent with Hemoglobin D Trait.
9/4/2015	ELG	9/4/2015	1001150	HGB A2	3.2	7.		
9/4/2015	ELG	9/4/2015	1410000	HGB A	57.1	7.		
9/4/2015	ELG	9/4/2015	1410004	HGB D	39.7	7. 4	н	
9/4/2015	EL <i>G</i>	9/4/2015	2000020	WBC	9.5	K/uL		
9/4/2015	EL <i>G</i>	9/4/2015	2000040	RBC	4.91	M/uL		
9/4/2015	ELG	9/4/2015	2000060	HEMOGLOBIN	117	g/dL		
9/4/2015	ELG	9/4/2015	2000080	HEMATOCRIT	35.2	7.		
9/4/2015	ELG	9/4/2015	2000100	MCV	72	fL.	L	
9/4/2015	ELG	9/4/2015	2000150	RDW	15.4	7.		
9/4/2015	EL <i>G</i>	9/4/2015	2000160	PLATELET C	323	K/uL		

Most Common Globin Variants in Guangdong


A2 c.377T>C

Alpha Variants

- (1) Hb Constant Spring A2 c.427T>C
- (2) Hb Q Thailand A1 c.223G>C
- (3) Hb G Honolulu A2 c.91G>C

the traditional delta globin's A2 to get the total Hb A2.

Hb Quong Sze

Beta Variants

ß

(in weeks)

- (1) Hb E HBB c.79G>A
- (2) Hb New York HBB c.341T>A
- (3) Hb J-Kaohsiung HBB c.179A>C

Laotian Beta Variants

- (1) Hb E HBB c.79G>A
- (2) Hb Minneapolis-Laos HBB c.356T>A
- HBB c.410G>A • (3) Hb Hope
- (4) Hb Phou Bia HBB c.295G>C

Lou, Wang, et al. Hemoglobin, (38)4: 282, 2014 inchaisuriya, et al. Euro J Haematol, (74)3: 221. 2005

Hb Quong Sze Globin Variant in Chinese a highly unstable α -globin chain

Table 1. α-Globin genotypes in 319 patients with Hb H disease from California, Hong Kong, and Ontario^{31,33,41}

Nondeletional	53	17
(SEA/α Constant Spring [Codon 142 TAA>CAA or Ter→Gin]α)	31	10
(SEA/α Quong Sze [Codon 125 CTG> CCG or Leu→Pro]α)	7	2
$(-SEA/\alpha Codon 30 deletion of GAG\alpha)$	3	< 1
$(-TOT/\alpha^{Codon 30 deletion of GAG}\alpha)$	1	< 1
(SEA/a Initiation codon ATG>AGa)	1	< 1
(THAI/αInitiation codon ATG⇒AGα)	1	< 1
(SEA/α Codon 31 AGG⇒AAG or Arg→Lysα)	2	< 1
$(FIL/\alpha Codon 35 TCC>CCC or Ser \rightarrow Pro_{\alpha})$	1	< 1
$(-MED/\alpha IVS deletion of TGAGG\alpha)$	1	< 1
(SEA/α Codon 59 GGC>GAC or Gly→Aspα)	1	< 1
(SEA/αPakse [Codon 142 TAA>TAT or Ter→Tyr)α)	2	< 1
(THAI/ _α Constant Spring [Codon 142 TAA⇒CAA or Ter→Gin] _α)	1	< 1
$(\alpha^{\rm Hb} {\rm Sallanches} [{\rm Codon} {\rm 104} {\rm TGC}{\rm >} {\rm TAC} {\rm or} {\rm Cys}{\rightarrow} {\rm Tyr}]_{\alpha/\alpha} {\rm Hb} {\rm Sallanches}_{\alpha})$	1	< 1

Chui, et al. Blood (101)3: 791,

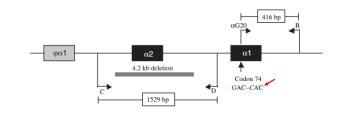
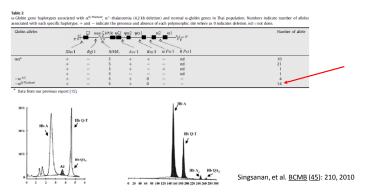

<u>Hb Q Thailand</u>

Table 1. α-Globin genotypes in 319 patients with Hb H disease from California,
Hong Kong, and Ontario ^{31,33,41}

Hb H disease	No. of patients	%
Deletional	266	83
(SEA/-α ^{3.7})	175	55
(^{SEA} /-α ^{4.2})	37	12
(FIL/-œ ^{3.7})	36	11
(^{MED} /- $\alpha^{3.7}$)	8	2
(THAI/-α ^{3.7})	2	< 1
(BRIT/-α ^{3.7})	1	< 1
(^{SA} /-α ^{3.7})	1	< 1
(de novo/-cx ^{3.7})	1	< 1
SEA _{1-α} 4.2 Q-Thailand [Codon 74 GAC:>CAC or Asp→His])	4	1
	1	< 1

Chui, et al. Blood (101)3: 791, 2003


Hb Q Thailand

Haematol (74): 221, 2005

Sanchaisuriya, et al. Euro J

Hb Q Thailand

Most Common Globin Variants in Blacks

<u>Alpha Variants</u>

- Hb G-Philadelphia $A_2 c.207C>G$ often in cis with the $-\alpha$ 3.7 (A1) deletion $A_2 Asn68Lys$
- Hb Evanston A2 c.43T>A more often in cis with the $-\alpha$ 3.7 (A1) deletion A2 Trp14Arg

Delta Variants

• Hb A2' (HbB2) HBD c.49G>C Gly16Arg

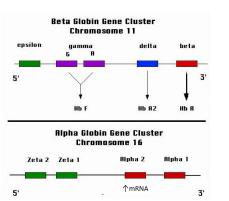
Beta Variants

- Hb S
- Hb C
- Worth mentioning:
- Hb C Harlem /Hb C Georgetown

The % of the Variant also assists in interpreting which globin chain is involved

Delta globin variants comprise about ½ of the total HbA2

	Ref Range	6d ago	Comments
IGB PATTERN, BLD		SEE NOTE (A)	See comments
IGB F %, BLOOD, LECTROPHORESIS	0.0 - 2.0 %	<1.0	
IGB A2 %, BLOOD, LECTROPHORESIS	0.0 - 3.3 %	1.1	
EMOGLOBIN LECTROPHORESIS, NTERPRETATION		SEE NOTE	See comments
IGB A %, BLOOD, LECTROPHORESIS	%	97.8	
IGB A2 VARIANT %,	<=0.0 %	1.1 (H)	


The % of the Variant suggests which globin chain is involved

- Beta globin variants typically comprise between 30-50% of what would otherwise be HbA
- It can be less than 30% if it is unstable or if it has decreased transcription
 efficiency

Dx: COUNS			
	Ref Range	2wk ago	Comments
HGB PATTERN, BLD		HGB AE (A)	
HGB F %, BLOOD,	0.0 - 2.0 %	2.1 (H)	
ELECTROPHORESIS			
HGB A2 %, BLOOD,	0.0 - 3.3 %	4.1 (H)	See comments
ELECTROPHORE SIS			
HEMOGLOBIN		SEE NOTE	See comments
ELECTROPHORE SIS,			
INTERPRETATION			
HGB A %, BLOOD,	%	68.4	
ELECTROPHORESIS			
HGB E %, BLOOD,	<=0.0 %	25.4 (H)	
ELECTROPHORE SIS			
Result Narrative			

a-globin Variants

- Each upstream Alpha2 gene produces about twice the amount of mRNA than does Alpha1. Alpha 2 thus codes for about 30% of the total alpha globin made inside the red blood cell.
- That leaves about 20% being made by each Alpha1 gene.

The % of a Variant is not always helpful

	CVISION NORMAL M	ULTIGRAVIDA PREGN	
	Ref Range	1mo ago	Comments
HGB PATTERN, BLD			
HGB F %, BLOOD, ELECTROPHORESIS	0.0 - 2.0 %	<1.0	
HGB A2 %, BLOOD, ELECTROPHORESIS	0.0 - 3.3 %	(3.5 (H)	See comments
HEMOGLOBIN ELECTROPHORESIS, INTERPRETATION		SEE NOTE	See comments
HGB A %, BLOOD, ELECTROPHORE SIS	%	66.0	
HGB %, BLOOD,	<=0.0 %	30.5 (H)	

The % of the α-globin Variant

• The % of an alpha globin variant is somewhat variable:

	Ref Range	1yr ago		Comments
HGB PATTERN, BLD		SEE NOTE (A)		See comments
HGB F %, BLOOD, ELECTROPHORESIS	0.0 - 2.0 %	<1.0		
HGB A2 %, BLOOD, ELECTROPHORE SIS	0.0 - 3.3 %	2.7		
INTERP		SEE NOTE		See comments
HGB A %, BLOOD, ELECTROPHORE SIS	96	97.3		
HGB RARE VARIANT %, BLOOD, ELECTROPHORESIS	<=0.0 %	23.1 (H)		See comments
MOGLOBIN ELECTRO	PHORESIS	Entry Date: 12/5/2013	kp.org: Shared	Final re

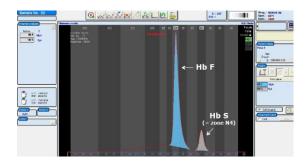
The % of the α-globin Variant

• The % of an alpha globin variant is somewhat variable:

atus: Final result	Visible to patient: kp.org	Next appt: None Dx: ANTENATAL SCREE	NING
	Ref Range	4mo ago	Comments
HGB PATTERN, B	LD	SEE NOTE (A)	See comments
HGB F %, BLOOD ELECTROPHORE		<1.0	
HGB A2 %, BLOO ELECTROPHORE		2.2	
HEMOGLOBIN ELECTROPHORE INTERPRETATION		SEE NOTE	See comments
HGB A %, BLOOD ELECTROPHORE		79.8	
HGB A2 VARIANT BLOOD, ELECTROPHORE	,	0.6 (H)	
HGB RARE VARIA %, BLOOD, FLECTROPHORE		(17.2 (H))	

Variant interpretation variables:

- Sheer number of identified variants
- Which globin has the nucleotide change?
- If an α -globin variant, is it $\alpha 2$ or $\alpha 1$?
- What is the affinity of the variant globin to its paired globin? e.g. Is the β-variant more positively or negatively charged than normal βglobin?
- What is its stability?
- What is its rate of synthesis?


Practice Case: Which globin Variant?

tus: Edited Result - FIN EXAM	AL Visible to pati	ent: kp.org Next appt: None Dx: RC	UTINE ADULT HEALTH CHECK
	Ref Range	4mo ago	Comments
HGB PATTERN, BLD		SEE NOTE (A)	See comments
HGB F %, BLOOD, ELECTROPHORESIS	0.0 - 2.0 %	<1.0	
HGB A2 %, BLOOD, ELECTROPHORESIS	0.0 - 3.3 %	1.0	
HEMOGLOBIN ELECTROPHORESIS, INTERPRETATION		SEE NOTE	See comments
HGB A %, BLOOD, ELECTROPHORESIS	%	45.4	
HGB H %, BLOOD, ELECTROPHORESIS	<=0.0 %	<2.0 (H)	
HGB A2 VARIANT %, BLOOD, ELECTROPHORESIS	<-0.0 %	(1.1 (H))	
HGB RARE VARIANT %, BLOOD, ELECTROPHORESIS	<=0.0 %	52.5 (H)	

Practice Case: Which globin Variant?

See comments See comments
See comments
See comments
-

<u>Practice case: This CE result is on a full-term</u> gestation neonate. What is the suspected dx?

Practice Case: HbA = 72.7% Is the unidentified variant an α -, β-, or δ-globin variant?

	I ELECTROPHORESIS	Next appt: None	-
lewer results are	available. Click to view them r	IOW.	
	Ref Range	3yr ago	Comments
HGB PATTER	N, BLD	SEE NOTE (A)	See comments
HEMOGLOBI	N VARIANT	SEE NOTE (A)	See comments
HGB F %, BLC ELECTROPHO		0.6	
HGB A2 %, BI ELECTROPHO		2.7	
INTERP		******	
Component	Comments		
Hemoglobin Variant %	Unidentified Hemog	lobin = 24 %	