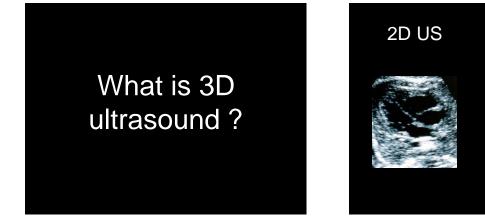
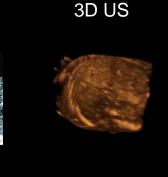
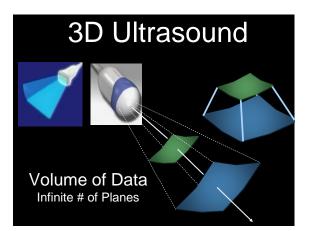
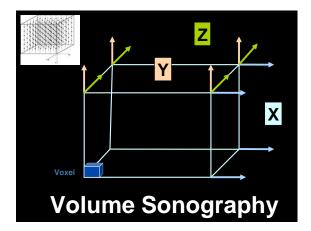
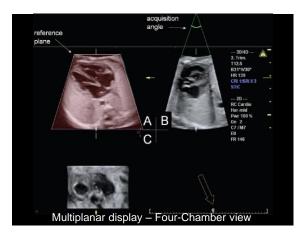
Three Dimensional Ultrasound in Obstetrics

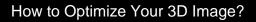


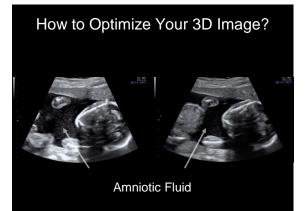


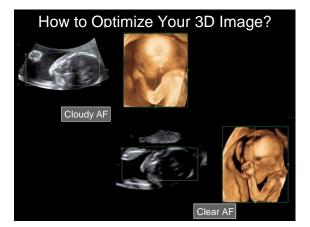

Alfred Abuhamad, M.D. Eastern Virginia Medical School


Outline


- What is 3D ultrasound?
- How to optimize your 3D image?
- Provide you with 10 compelling clinical advantages of 3D ultrasound in the Ob practice?
- Highlight the scientific evidence for 3D over 2D in Obstetric ultrasound?
- Present my view into the future of 3D

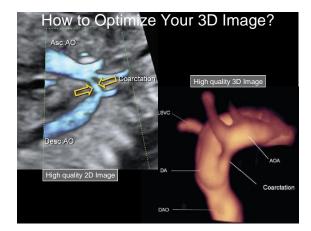



Surface rendering – Four-Chamber view


How to Optimize Your 3D Image?

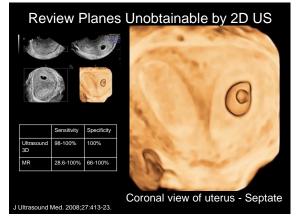
- Minimize the depth on the screen
- Narrow the sector width
- Adjust the focal zone to the target level
- Avoid shadowing by skeleton
- Enhance 2D image first
- Place your acquisition box close to target
 organ
- · Maximize speed of acquisition

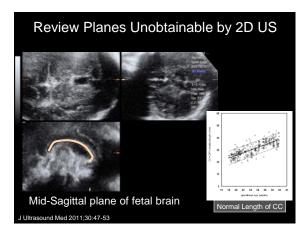
 In general, the darker the amniotic fluid – the better your 3D volume (surface rendering and resolution in planes B and C)



How to Optimize Your 3D Image?

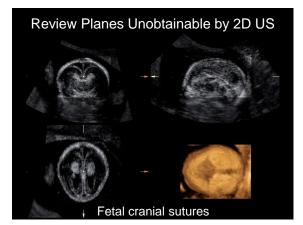
What The Experts Don't Tell You:

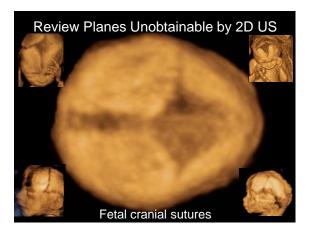

- The quality of 3D is so much dependent on the quality of 2D imaging in all its aspects –
- Major limitation of current 3D ultrasound


Advantages of 3D Ultrasound

1- Review Planes Unobtainable by 2D Ultrasound

Surface rendering - cardiac valves

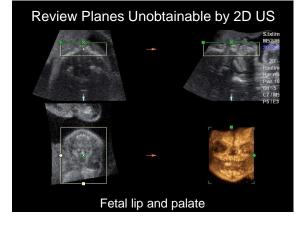



Review Planes Unobtainable by 2D US

Midline Anomalies of Fetal Brain

- 3D median planes are more easily obtained
- Allow for accurate diagnosis of anomalies
- Valuable approach for rapid assessment of corpus callosum and cerebellar vermis

Ultrasound Obstet Gynecol, 2006 Oct;28(5):742 Ultrasound Obstet Gynecol 2012; 39:279-287

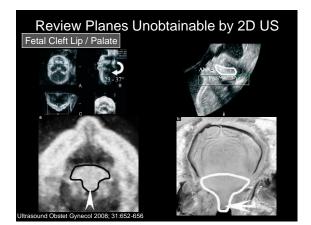


Review Planes Unobtainable by 2D US

Fetal Cranial Sutures

- Patterns of normal and abnormal development described
- Premature closure of coronal sutures in Apert syndrome
- Development of sutures in Trisomy 21 described

Ultrasound Obstet Gynecol, 2006 Mar;27(3):286 Ultrasound Obstet Gynecol, 2006 Jan;27(1):28 Ultrasound Obstet Gynecol, 2005 Dec;26(7):761



Review Planes Unobtainable by 2D US

Fetal Cleft Lip / Palate

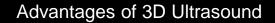
- Flipped face view
- Reverse face view
- Underside view
- 30° inclined axial view

Jitrasound Obstet Gynecol 2007 Feb;29(2):159 - Ultrasound Obstet Gynecol 2005 Jan;25(1):12 I Ultrasound Med 2006 Nov;25(11):1423 - Ultrasound Obstet Gynecol 2008; 31:652-656

Review Planes Unobtainable by 2D US

Fetal Cleft Lip / Palate

- Prospective study, low risk
- 1856 second trimester pregnancies
- Diagnosis at first scan: 87 % (3D) vs 78 % (2D)


J Evid Based Dent Pract 2006 Dec;6(4):278

Review Planes Unobtainable by 2D US

Fetal Facial / Neck Anomalies

		rity, %	PPV, %		
nomalies	3D/4DUS	2DUS	3D/4DUS	2DUS	
NS	96.55	86.21	80	75.76	
ice/neck	96.15*	65.38	78.13	77.27	
bdomen	92.86	85.71	86.67	85.71	
xtremities	96.3a	48.15	89.66	81.25	
hest	80	60	92.31	90	
ther	95	100	100	100	
otal	93.89*	73.28	86.01	83.47	



2- Review Topographic Anatomy (skin)

Review Planes Unobtainable by 2D US

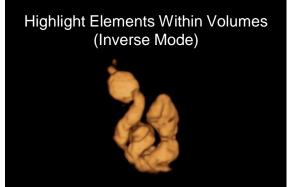
Fetal Extremities

Anomalies		rity, %	PPV,	
Anomalies	3D/4DUS	2DUS	3D/4DUS	2DUS
CNS	96.55	86.21	80	75.76
Face/neck	96.15*	65.38	78.13	77.27
Abdomen	92.86	85.71	86.67	85.71
Extremities	96.3a	48.15	89.66	81.25
Chest	80	60	92.31	90
Other	95	100	100	100
Total	93.894	73.28	86.01	83.47

Advantages of 3D Ultrasound

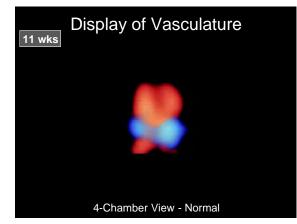
3- Rotate Volumes To View All Sides

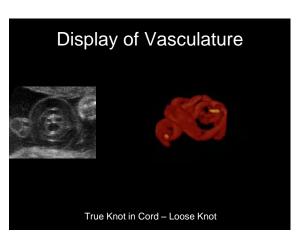
Advantages of 3D Ultrasound

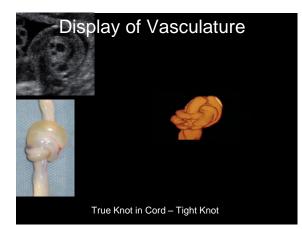

4- Highlight Elements Within Volumes

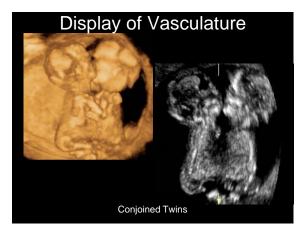
Highlight Elements Within Volumes

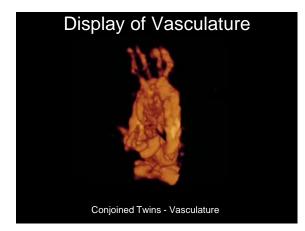
Highlight Elements Within Volumes

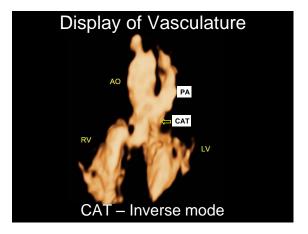


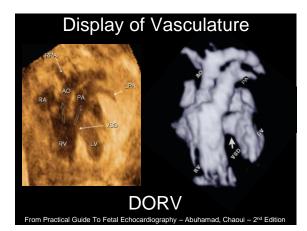


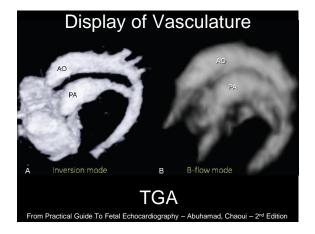

Prune Belly Syndrome

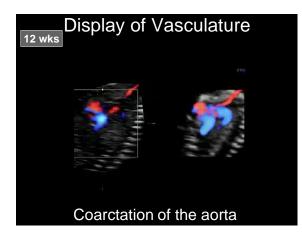

Advantages of 3D Ultrasound


5- Better Display of Vasculature within Volumes or Organs









Advantages of 3D Ultrasound

6- Enhanced Accuracy of Organ Volume Measurements

Volume Measurements

Lung Volume / Pulmonary Hypoplasia

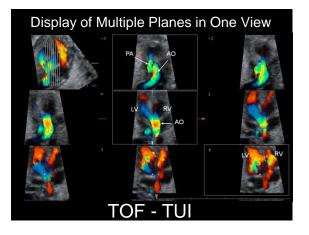
- 3D US had best diagnostic accuracy
- PPV: 100%, NPV: 92%
- Superior to 2D biometric parameters

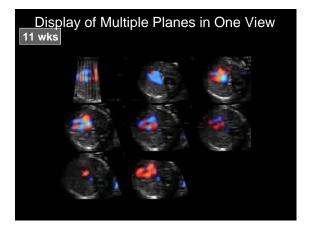
Prenat Diagn, 2007 Mar;27(3):216

Felal organiStudy	Year	Contry	Febare (N)	Design	Melfool		Volence (mL)	Difference (%)	Licin
Iraia									
Rochberra et al.21	2004	Netherlands	1.1	Longitudinal	WICAL 10	78	177		-1.18
Churp et al.28+	2003	Tuiwan	207	Cross-suttienal	Multiplanar	28	194.59		0.00
Endres and Cohen ²⁰	2001	USA	85	Cross-sectional	Multiplanat	28	227.74	17	
Cerebellam									
Hats et al. ²⁰		Japan	- 13	Longitudinal	Multiplanar	32	82	-11	-0.45
Charge et al. ²¹ *		Triwah	235	Cross sectional	Multiplanar	32	9.25		0.00
Armen Jimor et al.22	202	Trant	52	Longitudittal	VOCAL 50	52	10.99	19	0.75
Rutten et al.11	2009	Netherlands	27	Longitudinal	Multiplanar	32	11.35	23	0.91
Embryo									
Falcon at al. ²⁴ Blass et al. ²⁰ t	2005		417	Cross-sectional		10		data at 10 v	
		Norway	-64	Oros sectional		10	424	-27	-0.7
Avirans et al.* Gadelia et al. ³⁶		Brasil		Cross-sectional Lonortadinal		10	4.62	-11	-0.5
Azono limor et al.27		trazi	25	Cross-sectional		10	3.06	-12	-0.3
Remain et al.	2000	Netherlands	42		Lattice VE	10	5.15	-12	-0.2
Rolo et al. ¹⁰		Intel	50	City waternal		10	5.64	- 21	20.7
Bagrains at al. 194	2007		164	Cross-sectional Oross-sectional		10	5.04		-0.7
Martino et al. ⁴⁰		Real	20	Lowinging	VOCAL 15	10	6.2	- 21	0.5
Ferrar	2000	Ex alla		rudiometers.	YOLA D	-	-		
Mahon et al.19	7000	THE	451	Lowindial	Multiclasur	-14	2.8	-27	-2.57
Charge of al. 184	2007	Taiwan	304	Crim sectional		34	3.82		0.0
Ling									
Chang et al. 11.+	2003	Thissn.	226	Crow-sectional	Midtelaur	12	14.57		0.0
Churge et al.42	1997	Taiwan	55	Orm-sectional	Multiplaner	32	42.02	14	0.9
Knews at al.42		Ispan	3.4	Longitudited	Multiplanar	32	41.1	14	1.1
Boito at al.**		Netherlands	85	Cross-sectional		32	46.42	22	
Landy et al.41		Netherlands	25	Orom-sectional		32	72.02	32	2.3
Dos Santos Rizzi et al.44 Langa	2098	tessi	53	Longitudinal	Multiplanar	-32	74	36	2.8
D'Arcs et al.47	1956		20	Cross-sectional	and the second second second	28	17.2	-12	-2.5
		lapan.	14	Logitalind	Multiplanar	58	1478	-31	- 25
Osada yt al.47	2007	lanan	125	Cross-sectional	Multiplanar	28	24.99	-33	
Rafernate et al. 10	2000		54	Loneinsdinol	Multiplanar (f)	28	25.26	-38	-14
Mortelin et al. 11	2001	france	622		2DC1D Multiplanat	28	26.81	-26	- 22
Armyo Jimior et al.22	2008	Tracil	51	Cross-wattonal	Multiplanar	28	30.8	-15	-0.3
Charge et al. ¹¹¹	3903	Taiwan	152	Cross-sectional	Multiplanar	28	12.45		-0.4
Pohls and Kempen	2994	Germany	36	Cross-soltional	Multiplanar	28	11,19	-1	-0.4
Balence est al. 14		Reani	50	Ories autional	VOCM 30	28	15.87	-1	~0.0
Peralta or al.27%	2006		1.50	Cross-sectional	VOCAL 50	28	36.12		8.0
Rhanno et al. ^{5m}	2004	France	105	Cross-sectional	VOCAL 30	28	39.8	19	0.5
Gerards et al.27		Netherlands	78	Longitudinal	Multiplanar (f)	28	40.67	13	0.7
Lee et al."		Austria	78	Mixed	Multiplanar (a)	28	41.96	14	0.9
Landy et al.70		Netherlands	29	Cross-sectional		28	42.29	17.	0.9
Sabogal at al.19	2004	2/5.6	.75	Longitudinal	Multiplanar	28	41.1	20	1.1
Kidney 1									
Hotels at al.22		Thiwan	112	Crim-sectional		34	7.5	-37	-17
Tedesco st al.20		teaci	- 57	Longitudinal		54	11.7	-1	-0.0
Yu vi al tex	2000	Taiwan	1.14	Gross sectional		34	11.84		0.0

Advantages of 3D Ultrasound

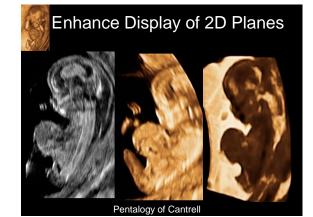
7- Enhanced Estimation of Fetal Weight

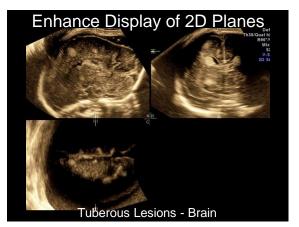

3D Ultrasound

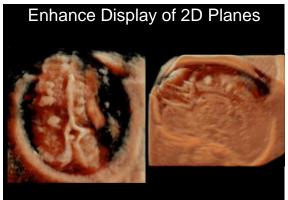

Estimation of Fetal Weight

- Fractional limb volume (EFW)
- Upper arm volume (IUGR)

J Ultrasound Med. 2001 Dec;20(12):1283 Ultrasound Med Biol. 2005 Nov;31(11):1435 Advantages of 3D Ultrasound


8- Display of Multiple Planes in One View




Advantages of 3D Ultrasound

9- Enhanced Display of 2D Ultrasound

Tuberous Lesions - Brain

Advantages of 3D Ultrasound

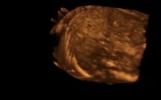
10- Ability to submit Volumes for Remote Expert Review

Submit 3D Volumes for Review

Volumes	Sensitivity, %	Specificity, %	PPV, %	NPV, %	FP, %	FN,%
All	93.3	96.5	96.5	93.3	3.5	6.7
Transabdominal acquisition	93.6	98.3	98.3	93.5	1.7	6.5
Transvaginal acquisition	92.0	94.5	96.8	86.7	3.2	13.3
Gestational age 18-24 wk	92.2	96.8	96.5	92.9	3.5	7.1
Gestational age 24-30 wk	98.4	93.6	96.4	97.2	3.6	2.8
Table 3. Diagnostic Indices of Dit	fferent Central Nen	ious System Anoma	lies Identified b	oy 3-Dimensiona	IVolumes	
Table 3. Diagnostic Indices of Dif	fferent Central Nerv	-	lies Identified t	by 3-Dimensiona	I Volumes	FN.%
Anomaly	Sensitivity, %	Specificity, %	PPV, %	NPV,%	FP, %	
Anomaly Ventriculomegaly hydrocephaly	Sensitivity, % 85.6	Specificity, % 96.5	PPV, %	NPV, % 95.9	FP, %	4.1
Anomaly	Sensitivity, %	Specificity, % 96.5 96.5	PPV, % 874 82.5	NPV,%	FP, %	4.1 2.0
Anomaly Ventriculomegaly hydrocephaly Corpus callosum anomalies	Sensitivity, % 85.6 89.5	Specificity, % 96.5	PPV, %	NPV, % 95.9 98.0	FP, % 12.6 175	4.1
Anomaly Ventriculomegaly hydrocephaly Corpus callosum anomalies Posterior fossa anomalies	Sensitivity, % 85.6 89.5 87.2	96.5 96.5 96.5 96.5	874 82.5 81.3	NPV, % 95.9 98.0 97.7	FP, % 12.6 17.5 18.7	4.1 2.0 2.3
Anomaly Ventriculomegaly hydrocephaly Corpus callosum anomalies Posterior fossa anomalies Holoprosencephaly	Sensitivity, % 85.6 89.5 87.2 100.0	Specificity, % 96.5 96.5 96.5 96.5	874 82.5 81.3 52.6	NPV, % 95.9 98.0 97.7 100.0	FP, % 12.6 175 18.7 47.4	4.1 2.0 2.3 0.0
Anomaly Ventriculomegaly hydrocephaly Corpus callosum anomalies Posterior fossa anomalies Holoprosencephaly Neural tube defects	Sensitivity, % 85.6 89.5 87.2 100.0 92.3	Specificity, % 96.5 96.5 96.5 96.5 96.5	874 82.5 81.3 52.6 76.9	95.9 98.0 97.7 100.0 99.0	FP, % 12.6 175 18.7 47.4 23.1	4.1 2.0 2.3 0.0 1.0

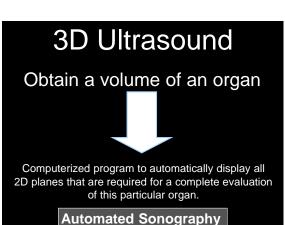
3D Ultrasound

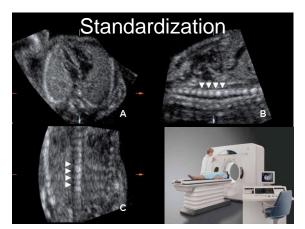
What is My View of the Future of 3D Ultrasound?


2 Important Concepts in 3D Sonography

3D Ultrasound

Concept 1:


Acquired volume of a structure contains all the anatomical 2D planes for a complete evaluation of this structure



3D Ultrasound

Concept 2:

For every organ, 2D anatomical planes that are needed for a complete evaluation are organized in a constant anatomic relationship to each others.

3D Ultrasound Will Lead to:

- Standardization
- Simplification
- Automation

of the ultrasound examination

Advanced 3D Probes

 $\label{eq:http://www.cardiovascularultrasound.com/content/1/1/12/suppl/S2 http://wikiradiography.com/page/Ultrasound+physics?t=anon$

3D Ultrasound

•Optimization of display of 3D ultrasound is dependent on the quality of the 2D image •Several 3D ultrasound clinical applications exist in advanced obstetrical imaging •Future of 3D technology is promising especially in the field of ultrasound automation

