First Trimester Fetal Genetic Analysis: It's Not All About **Down's Syndrome**

Ronald J. Wapner, MD **Columbia University Medical Center** Dept. Ob/Gyn

Disclosures

Ronald J. Wapner, MD

Relevant Financial Relationships: Received small honoraria from the following companies for giving scientific lectures: Ariosa Diagnostics; Illumina, Inc.; Sequenom, Inc.

These lectures did not endorse the companies or their products and focused completely on the science.

Wapner

Learning Objectives

After completing this presentation, the learner will be able to:

- 1: Understand the screening approaches to fetal aneuploidy and other fetal genetic disorders
- 2: Understand the information available through diagnostic testing by CVS in the first trimester

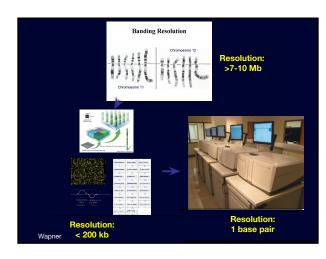
3: Improve the ability to counsel patients on genetic screening and diagnostic approaches.

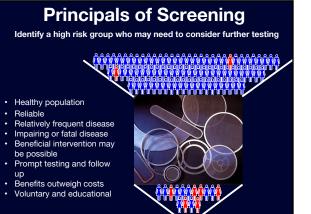
Wapner

Lecture Outline

- Principals of Screening
 Characteristics of an Ideal Prenatal Screening Test
- Contracted study of an index Premata Societing Test
 Screening For Down Syndrome
 Calculation of Likelihood Ratio
 Prospective Study Outcomes Combining Mat age, NT, and Biochemistry
 Cell free fetal DNA in the Maternal Circulation
- Meta-Analysis of NIPT Performance 2016
 Cell free DNA in Low Risk Patients

- Cell free DNA in Low Hisk Patients
 Cell free fetal DNA: Chincal Challenges
 Value of NT and Biochemical Screening Beyond Common Aneuploidy
 Value of NT and Biochemical Screening Beyond Common Aneuploidy
 Early Diagnosis of Structural Anomalies with Ultrasound
 Invasive Testing Methods What is the Risk?


Wapner


THE LANCET, JUNE 18, 1977

WHO'S FOR AMNIOCENTESIS?

Virtually all chromosomal aberrations and many biochemical disorders can be detected by amniocentesis and prenatal diagnosis. Although errors do occur in cytogenetic and biochemical investigations,^{1,2} there is a strong case for prenatal

Wapner

Characteristics of an Ideal Prenatal Screening Test

- High sensitivity Identifies a high percentage
 of affected individuals
 - High specificity Does not alarm a high percentage of unaffected individuals
- Positive early enough in gestation to allow maximal options and safety
 - Easy and inexpensive to perform

Wapner

	Screening For Down's Syndrome
Wapner	

Maternal Age is a Screening TestAge @DSTotalDeliveCAryRisk

	20	1/166	1/526
	25	7	1/476 (1/4
	30	1/125	1/385 %)
	31	0	1/385
	32	1/950	1/322
	33	1/909	1/286
	34	1/769	1/238
	35	1/602	1/192 (1/2
	36	1/485	1/156 %)
	37	1/378	1/127
	38	1/289	1/102
Wanner	30	1/224	1/83

Maternal Age Screening for Down Syndrome

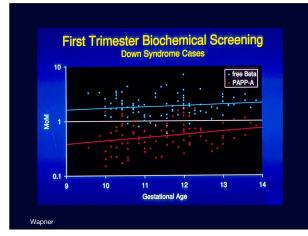
"...the age limit is arbitrarily decided by logistical concerns and is not the consequence of a sudden biologic difference between women above and below any given risk".
NICHD. 1979

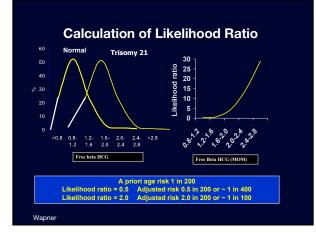
 Maternal Age ≥35

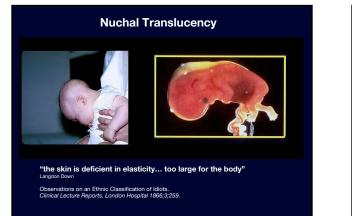
 Risk Cutoff: (Second Trimester)
 1:270

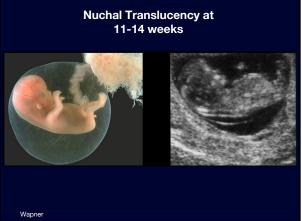
 Population at Risk (FPR) 14.2%
 Detection Rate 50%

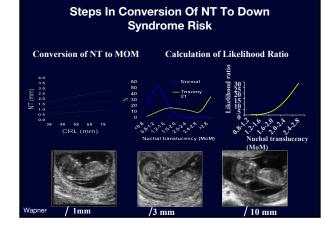
 Detection Rate for 5% FPR
 30%

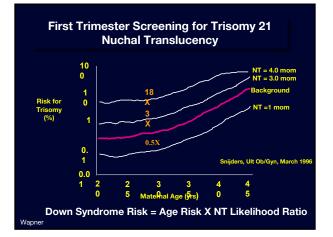

 Odds of Being Affected
 1:100

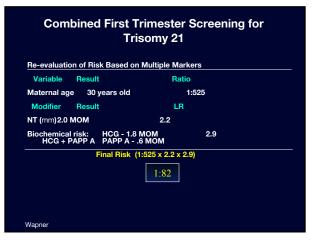

Down Syndrome screening has moved from the second to the first trimester

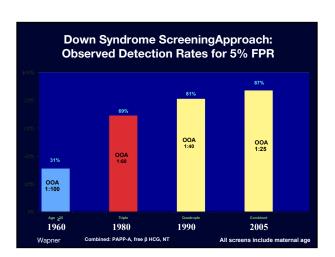

More Accurate Safer Patients Prefer


Performing invasive testing for maternal age alone can no longer be justified


Wapner

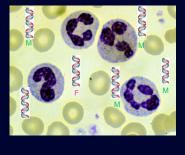


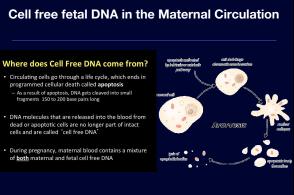


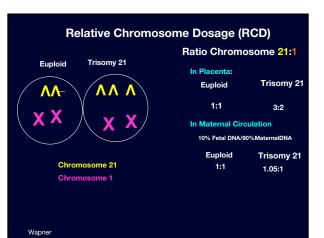


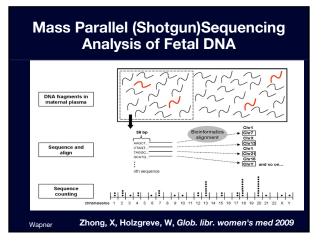
Prospective Study Outcomes Combining Mat age, NT, and Biochemistry

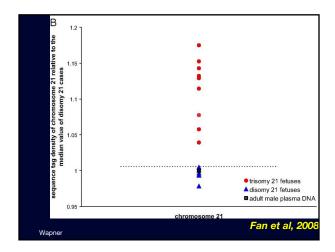
First Trimester DR at 5% SPR (1:270)

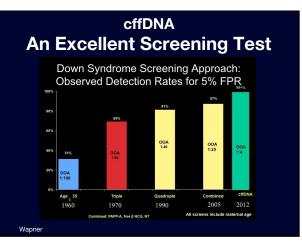

Study	Patients	Down Cases	Detection Rate
BUN	8,216	48/61	79%
FaSTER	33,557	100/117	86%
SURUSS	47,053	84/101	83%
Nicolaides	75,821	301/325	93%
TOTAL	167,210	533/604	88%

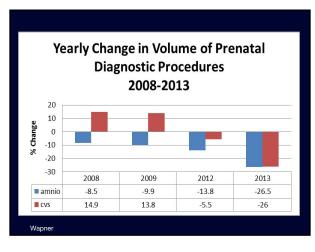

Wapner

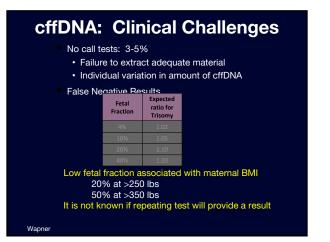


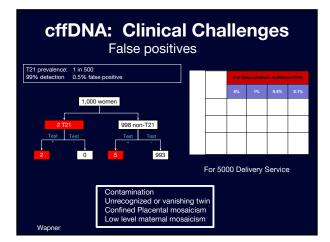

Evolving Appreciation of the Top Layer of the Gradient



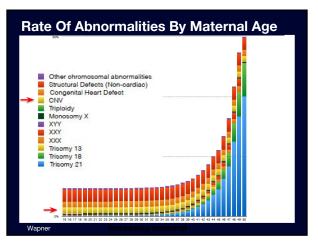


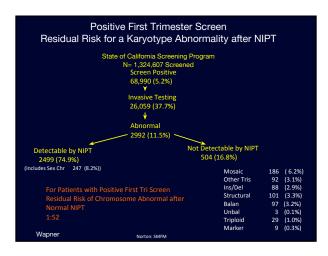



Meta	Anal	ysis of 2	N 201		T I	Perf	or	ma	nce	e
	High RIsk		Ser	S	FPR	1	PPV			
	High Risk									
		Trisomy 21	91		0.3		91			
		Trisomy 18	84		0.3		84			
		Trisomy 13	87		0.1		87			
	Low Risk	Trisomy21	95.	9	0.1		82			
		Trisomy18	86.	5	0.2		37			
		Trisomy 13	77.	5	0.1		49			
	Triso	my		Sen	IS	FPR				
	Sex C	hrom		86%	6	0.6%				
No differ	ence by N	1PSS (24), ta	irget	ed se	eque	encing((9) or	SNP	(5)	
Wapner							Тау	lor Phillip	setal: Bl	MJ Open 21


cfDNA in Low Risk Patients

	Maternal Age <35 (DS 1:630)	FTS <1/270 (DS 1:1870)
Total	11,994	14,957
Sensitivity	100%	100%
Specificity	99.95%	99.95%
PPV	76.0%	50.0%
NPV	100%	100%
LR+	1996	1869
LR-	0	0
Vapner		


Value of NT and Biochemical Screening Beyond Common Aneuploidy


- Chromosome Abnormalities Other than Common Trisomies
- Early Identification of Structural Abnormalities
 Congenital Heart Disease
 Other Anomalies
- Mendelian Genetic Disorders
- Poor Pregnancy Outcome
 Placental Function
 Obstetrical Disorders

Wapner

Advanced Maternal Age: Residual Risk for a Cytogenetic Abnormality after cffDNA

Percent of Reported Ch Abnormalitie			Freq of Chrom Abn	% Trisomy 21,18,13
16		< 35	0.93%	18%
5	T21 T18 T13	35	Maternal Age	37%
5 53	■ 45,X	40	2.1%	68%
13	Sex trisomy Other rare	45	6.6%	78%
Amniocentesis Perfor	med	Ferg	uson-Smith, M.A. Pre	natal Diag 1984
Data adapted from Wellesley, D, et al., Ran population-based congenital anomaly regi				s from

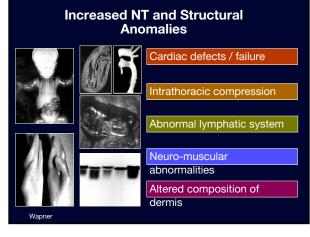
Detection Rate and FPR for ALL Chromosome Abnormalities Sequential Screen vs cfDNA N= 452,901 N = 2575 Chromosomal Abnormality (1:176)

California Prenatal Screening Program with mandated reporting of all chromosome abnormalities diagnosed prenatally or at age ≤ 1 y

	Detection Rate	FPR
cfDNA	70.5%	1.5%
Sequential	81.6%	4.1%

 Detectable by cFDNA :
 T13,18,21, or sex chromosomal aneuploidy

 Not detectable by cFDNA:
 Rare aneuploidies, large deletions and duplications, etc


Wapner

Value of NT and Biochemical Screening **Beyond Common Aneuploidy**

- Chromosome Abnormalities Other than Common Trisomies
- Early Identification of Structural Abnormalities •Congenital Heart Disease Other Anomalies
- **Mendelian Genetic Disorders** ٠
- **Poor Pregnancy Outcome** Placental Function Obstetrical Disorders

Wapner

Karyolype	Total	NT <3.0 mm	Percent with NT <3.0 mm
Trisomy 21	47	22	46.8%
Trisomy 18	16	6	37.5%
Trisomy 13	6	3	50%
Trisomy 16	1	1	100%
47,XYY	4	3	75%
45,X	9	0	0%
Triploidy	2	2	100%
70,XXYY	1	1	100%
47,XY, +7 / 46,XY	1	1	100%
47,00, +5/46,00	1	1	100%
47,XY, +13/46,XY	1	1	100%
47,00, + 22 / 46,00	1	1	100%
92,XXYY/46,XY	1	1	100%
46,XY,inv[1](p13q21)	1	1	100%
46,XX,t(5;21)(p13;q21.2)	1	1	100%
46,XY)(5;17)(q31.1;q24)	1	1	100%
46,#(6;9)(q13;p24)	1	1	100%
46,XX,der(4)(4;6) (p14;q27)pat	1	1	100%
Marker chromosome	1	0	0%
Total	97	48	49.5%

Increased Nuchal Translucency, Normal Karyotype and Structural Anomaly

NT	Anomaly	
<95%	<2%	
95-99%	3%	
3.5-4.4 mm	10%	
4.5-5.4 mm	19%	
5.5-6.4 mm	24%	
> 6.5 mm	46%	

ouka, AJOG 2005;192:1005-21

Early Diagnosis of Structural Anomalies with Ultrasound

Author	Population	N	1 st Tri Sensitivity	1 st + 2 nd Tri Sensitivity
Economides, 1998 ¹	Low-risk	1632	65% (11/17)	82% (14/17)
Whitlow, 1999 ²	Unselected	6443	59% (37/63)	81% (51/63)
Chen 2004 ³	≥ 35 y.o.	1609	54% (14/26)	77% (20/26)
Grande 2012	Unselected (nl Karyo)	13,723	49% (96/194)	N/A

First Trimester Anatomy Screening

Increasing number of first trimester scans -11 - 14 wk

- Improved high frequency transducers
- Better visualization of fetal anatomy
- First opportunity to detect structural anomalies

What anatomy can we see at 11-14 weeks?

	Successful visualization (n (%))				
Organ	Transabdominal scan	Transabdominal & transvaginal scan			
Head/Brain	1123 (98.16)	1144 (100)			
Face	1049 (91.69)	1135 (99.21)			
Spine	1111 (97.11)	1141 (99.73)			
Abdomen	1108 (96.85)	1142 (99.82)			
Stomach	1099 (96.06)	1133 (99.03)			
Kidneys	892 (77.97)	1002 (87.58)			
Bladder	1035 (90.47)	1136 (99.30)			
Extremities	1126 (98.42%)	1144 (100%)			

First Trimester Anatomic Survey: Detection Rates

- Majority of > 20 published studies = two-staged protocols with an 11-14 wk scan followed by an 18-22 wk scan
- First-trimester detection rates range 16-84%
 Majority reported detection rates > 50%
- After the second trimester ultrasound, two-stage protocols reported detection rates of 48-95%
 - Highest detection rates in studies screening high-risk women
 - In fetuses with multiple anomalies
 - At 13-14 weeks
 - Using a combined TA/TV approach

Timor-Tritsch I, Fuchs K, Monteagudo A, and D'Alton ME. Performing a fetal anatomy scan at the time of first-trimester screening. Obstet Gynecol 2009; 113:402-407.

Wapner

Wapner

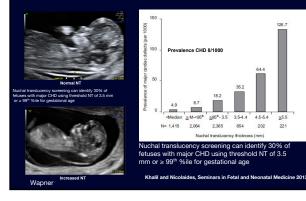
First Trimester Structural Anatomy: Detection rates

Almost Always	Usually	Sometimes	Never
Acrania Anencephaly Ectopia cordis Encephalocele Limb Body Wall Alobar Holopros	Gastroschisis Limb reduction Omphalocele	Arthrogryposis Cardiac defects Dandy-Walker Facial cleft Skeletal dysplasia Spina bifida	Pulmonary ACC Bowel
Wapner			

First Trimester Anencephaly

First Trimester Encepalocoel

Almost Always Detectable: Alobar Holoprosencephaly



Sometimes Detectable: Spine abnormalities

Wapner

Increased Nuchal Translucency and CHD

Role of Early Echocardiography

Aortic arch

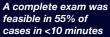
- Cardiac situs
 - 4-chamber view Ductal arch
- LVOT
- RVOT •

Wapner

•

- SVC and IVC

- Pulmonary veins 3-vessel view



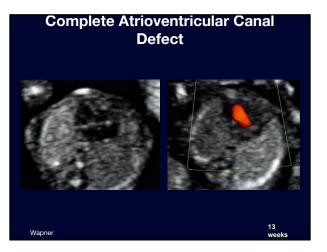
Biggest benefit: early reassurance

		Johnson and Simpson, Am J Perinatol 20
đ	Columbia University	Carmen and John Thain
	MEDICAL CENTER	Center for Prenatal Pediatr

First Trimester Fetal Echocardiography: Learning Curve

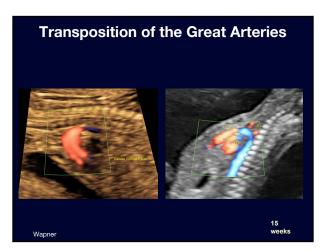
Parameter	N=103	A
4-chamber view	100%	fea
Tricuspid regurgitation	100%	ca
Outflow tract crossover	90%	
Bifurcating pulmonary artery	81%	
3-vessel view	55%	
Aortic arch	76%	
SVC/IVC	65%	
Doppler DV	99%	

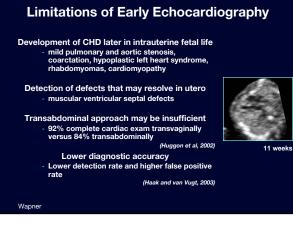
First Trimester Fetal Echocardiography


Authors	GA, wk	No.	Anomalies Detected
DeVore et al (1987) ²¹	14	1	VSD, PS
Gembruch et al (1990)22	11	1	AVSD
Bronshtein et al (1990)23	13-14	2	TOF
Bronshtein et al (1991)24	12-16	10	DORV, AVSD, VSD, TOF, HLV, SA-SV
Gembruch et al (1993)18	11-16	5	AVSD, PS, SV
Achiron et al (1994)25	10-12	8	Tachycardia, ectopia cordis, AVSD, Uhl anomaly, TA, TOP
Carvalho et al (1998)10	12	1	AVSD
Areias et al (1998) ²⁶	12-13	2	AVSD
Baschat et al (1999)27	11-14	4	Heart block, AVSD, DORV, TGA, PS
Haak et al (2002)28	11-14	10	AVSD, VSD, DORV, HLHS
Huggon et al (2002)29	10-14	60	AVSD, HLV, VSD, Ebstein anomaly, TA, PA, LI

Sensitivity of first trimester fetal echocardiography for major CHD varies from 10% in low-risk populations to >50% in high-risk groups

Haak and van Vugt, J Ultrasound Med 2003 Volpe et al, Prenatal Diagnosis 2011 Rossi and Prefumo, Obstet Gynecol 2013


Wapner


Abu-Rustum, et al. J Ultrasound Med 2011

Hypoplastic Left Heart Syndrome

Genetic Disorders Detected In Fetuses With Enlarged Nuchal Translucency

	Euploid fetuses (n)	NT (mm)	Genetic disorders (including neurodevelopmental delay)
Mangione et al., 2001	202	≥ 3mm	0.5%
Souka et al., 2001	1320	<u>></u> 3.5 mm	3.3%
Senat et al., 2002	89	<u>></u> 4 mm	6.4%
Bilardo et al., 2007	425	≥ 95 th %	5.4%
Total	2271		4.4%

Wapner

Bilardo Prenatal Diagnosis 2010

Increased NT and Normal karyotype Genetic Disorders

Genetic Syndromes

Akinesia deformation Noonan syndrome Smith-Lemil-Opitz Beckwith syndrome Fryn syndrome Zellweger syndrome Trigonocephaly Csyndrome Spinal muscular atrophy GM1-gangliosidosis

Wapner

Skeletal Dysplasias

Thanatophoric dysplasia Jarcho-Levine syndrome Achondrogenesis Asphyxiating thoracic dystrophy Campomelic dysplasia Nance Sweeney Syndrome Robert syndrome VACTER association EEC syndrome

Elevated NT <u>></u> 3.5mm					
	Ν	Pathogenic Mutation	VOUS	Total Abnormal	
Noonan Testing	483	5.2%	2.3%	7.5%	
Microarray	291	2.7%	2.4%	5.1%	
Total		7.9%	4.7%	12.6%	
Wapner				Coletta et al; AJOG 2014	

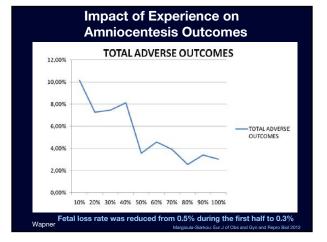
Noonan Syndrome

	rall Frequency:	
	Mutated Gene	%
	PTPN11	50%
	SOS1	10%-13%
	RAF1	3%-17%
	KRAS	<5%
	NRAS	rare
	BRAF	<2%
	MAP2K1	<2%
	Overall	75%-80%
Wapner		

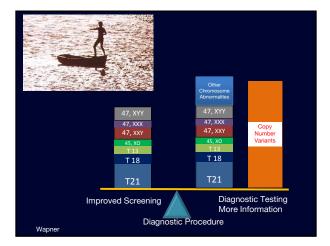
FOXC2

Wapner


Prevalence and Etiology of Congenital Abnormalities (It's Not All Down Syndrome)

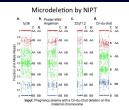

Prevalence		
Common Trisomies (21,18,13)	0.2%	
Chromosome Abnormalities Other than Common Trisomies	0.4%	
Microdeletons and duplications	1.5%	
Mendelian Genetic Disorders	0.4%	
Structural Congenital Abnormalities	3.0%	
Congenital Heart Disease	0.3%	

Wapner


Systematic Review: Risk of Diagnostic Procedure

Decreasing CVS Loss Rates With Experience (NICHD)

	<u>N CVS</u>	<u>Total</u> <u>SAB</u> <u>RATE</u>	Excess SAB Rate <u>CVS over</u> <u>Amnio</u>
1985 – 87 •Rhoads et al., NEJM, 1989	2278	3.2%	0.8% <i>(NS)</i>
1987 – 89 •Jackson et al., NEJM, 1992	3873	2.4%	
1997 – 2001 •Philip et al Obstet/Gynecol, 2004	1878	1.3%	


Overall Risk of a Congenital Abnormality (Its not all Down Syndrome)

	Prevalence
Common Trisomies (21,18,13)	0.2%
Chromosome Abnormalities Other than Common Trisomies	0.4%
Microdeletons and duplications	1.0%
Mendelian Genetic Disorders	0.4%
Structural Congenital Abnormalities	3.0%
Congenital Heart Disease	0.3%
Poor Pregnancy Outcome	
Wapner	

Where Are We Going ?


Non-invasive sequencing of the fetal genome is likely to be a reality in the not-too-distant future Tremendous counseling and ethical issues

- Uncertain Reassurance
- Counseling
- Scope Creep

Wapner

Conclusions

Prenatal aneuploidy screening is intended to identify women at the highest risk for a fetal chromosome abnormality

There are presently two approaches to screening in the first trimester each with its own advantages and disadvantage:

 Combined Screening using biochemistrty and nuchal translucency: Advanatage:

» low cost

- » Includes first trimester scan
- » Nuchal translucency identifies additional structural and genetic disorders

- Disadvantage:

» Sensitivity only 85- 90%; Specificty 97%

Wapner

Conclusions (cont.)

- Cell free DNA

- Advantage » Sensitivity for trisomy 21 over 99%; Specificty 99.9%
- DIsadvanatge
 - » Expensive

All patients should be informed of the availability and value of fetal diagnostic Testing by CVS or amniocentesis

- Identifies all chromosome abnormalities
- Identifies sub chromosomal microdeletions and duplications
- Pretest counseling is imperitive

Wapner

Key References

Wellesley D, et al., Rare chromosome abnormalities, prevalence and prenatal diagnosis rates from population-based congenital anomaly registers in Europe. *Eur J of Hum* Gen, 2012 May.

Timor-Tritsch I, Fuchs K, Monteagudo A, and D'Alton ME. Performing a fetal anatomy scan at the time of first-trimester screening. *Obstet Gynecol*, 2009 Feb; 113:402-407.

Johnson B, Simpson LL. Screening for congenital heart disease: a move toward earlier echocardiography. Am J Perinatol, 2007 Sep;24(8):449-56.

Souka AP, Von Kaisenberg CS, Hyett JA, Sonek JD, Nicolaides KH. Increased nuchal translucency with normal karyotype. AJOG, 2005; 192:1005-21.

Haak MC, van Vugt JM. Echocardiography in early pregnancy: review of literature. J Ultrasound Med, 2003 Mar; 22(3):271-80.