Sonographic Screening Examination of the Fetal Heart

Lami Yeo, MD

Director of Fetal Cardiology Perinatology Research Branch of NICHD / NIH / DHHS Bethesda, MD and Detroit, Michigan, USA Professor, Division of Maternal-Fetal Medicine Department of Obstetrics and Gynecology Wayne State University School of Medicine Detroit, Michigan, USA

Roberto Romero, MD, D.Med.Sci. Chief Perinatology Research Branch of NICHD / NIH / DHHS Bethesda, MD and Detroit, Michigan, USA

Disclosures

Lami Yeo, MD Roberto Romero, MD, D.Med.Sci.

No Relevant Financial Relationships

reo and Romero

Learning Objectives

- After completing this presentation, the learner will be able to:
- 1. Learn why it is important to perform a sonographic screening examination of the fetal heart
- 2. Establish fetal situs, cardiac axis, and position
- 3. Recognize normal fetal cardiac structures on ultrasound
- Determine which fetal cardiac views should be obtained during a sonographic screening exam

Yeo and Romero

Yeo and Romero

Sonographic screening examination of the fetal heart I. Introduction II. Congenital heart disease III. General considerations IV. Fetal cardiac examination A. Four-chamber view 1. Establishing situs 2. Establish cardiac axis and position B. Normal cardiac structures C. Outflow tracts 1. Aorta 2. Pulmonary artery 3. Short axis view of great vessels D. Three-vessel and three vessels and trachea views E. Color flow Doppler

eo and Romero

Introduction

Why is it important to learn how to perform a sonographic screening examination of the fetal heart ?

Introduction

- The <u>purpose</u> of sonographic screening examinations of the fetal heart is to maximize the detection of cardiac abnormalities during a second trimester ultrasound
- Performed in low-risk fetuses that are examined as part of routine prenatal care
- Specific cardiac views are recommended

Lee W. J Ultrasound Med 1998; 17:601-607 Yeo and Romero AlUM Practice Parameter for the Performance of Obstetric Ultrasound Examinations 2013

Introduction

 Suspected congenital heart defects will require a more comprehensive evaluation using fetal echocardiography

Congenital Heart Disease

Incidence: 4 – 13 per 1000 live births

· Leading cause of infant mortality

Yeo and Romero

 Between 1950 – 1994, 42% of infant deaths reported to the World Health Organization (WHO) were attributable to cardiac defects

Yeo and Romero

Cuneo BF et al. J Perinatol 2004; 24:674-67 Meberg A et al. Acta Paediatr 2000; 89:1344-135 Ferencz C et al. Am J Epidemiol 1985; 121:31:34 Rosano A et al. J Epidemiol Community Health 2000; 54:660-664

Congenital Heart Disease

- Structural cardiac anomalies are among the most frequently missed abnormalities during prenatal sonography
- Important cause of medico-legal liability
- High proportion of cases of congenital heart disease detectable prenatally occurs in patients <u>without</u> risk factors or extracardiac anomalies (thus, the importance of fetal cardiac screening)

Crane JP et al. Am J Obstet Gynecol 1994; 171:392-399 Abu-Harb M et al. Arch Dis Child 1994; 71:3-7 Stumpflen I et al. Lancet 1996; 348:854-857

Congenital Heart Disease

- Prenatal detection of congenital heart disease may improve the outcome of fetuses with specific types of cardiac lesions:
 - Transposition of great vessels
 - Hypoplastic left heart syndrome
 - Coarctation of aorta

eo and Romero

reo and Romero

Bonnet D et al. Circulation 1999; 99:916-918 Tworetzky W et al. Circulation 2001; 103:1269-1273 Andrews R et al. Arch Dis Child 2001; 85:474-477 Franklin O et al. Heart 2002; 87:67-69 Tworetzky W et al. Circulation 2004; 110:2125-213

Important Reasons to Identify Congenital Heart Defects *In-Utero*

- Prenatal counseling
- Invasive testing to detect aneuploidy
- Pregnancy options
- · Delivery at an appropriate facility
- · Optimal obstetrical and neonatal care

Yeo and Romero

eo and Romero

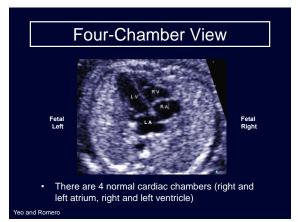
General Considerations

General Considerations

- Ultrasound examination optimally performed at 18 22 gestational weeks
- Some cardiac lesions are detected later in gestation (e.g. coarctation of aorta)
- Use the highest possible transducer frequency
- Use the cine-loop feature (e.g. confirm movement of valve leaflets)

Yeo and Romero

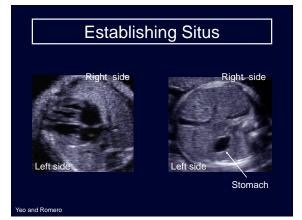
Yeo and Romero


General Considerations

- · High frame rate
- Increased contrast
- · Single acoustic focal zone
- Relatively narrow image field
- Magnify the image

reo and Romero

Fetal Cardiac Examination


Four-Chamber View

Establishing Situs

- Establish fetal position (vertex, breech, transverse)
- Identify the fetal right and left sides
- Identify that both fetal stomach and heart are
 on the left side of the fetus

Yeo and Romero

Types of Situs

- Situs solitus (normal)
 - Liver on right
 - Stomach, apex of heart, aortic arch on left
- Situs inversus ("mirror image")
 - Liver on left
- Stomach on right
- In either situs solitus or inversus, the cardiac apex may point to the left (levocardia), or point to the right (dextrocardia)

reo and Romero

eo and Romero

Situs Ambiguous

- · Neither situs solitus or inversus (indeterminate situs)
- Also known as cardiosplenic syndromes, or heterotaxy
- Two most common forms are: - Polysplenia or asplenia syndromes
- Some organs are on the correct side, while others are on the opposite of the expected side

'eo and Romero

Situs Ambiguous

Left side

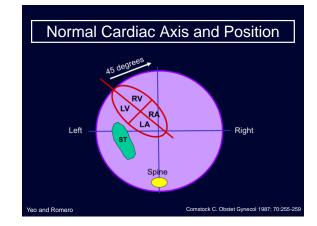
Right side

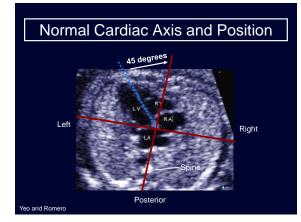
Stomach

Right side

Establish Cardiac Axis and Position

- · Normal orientation is called levocardia
- Heart size occupies one-third of the chest area
- Cardiac apex points to the left, and the majority of the heart occupies the left side of chest

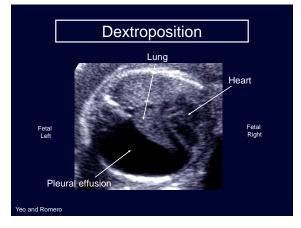

Normal Heart Size



Establish Cardiac Axis and Position

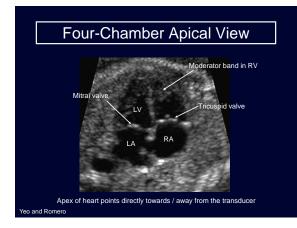
- Angle of fetal heart relative to the midline should be 45 ± 20 degrees
- · Left atrium is closest to the fetal spine
- Right ventricle is closest to the anterior chest wall

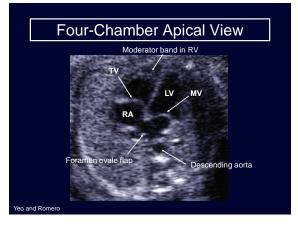
Yeo and Romero

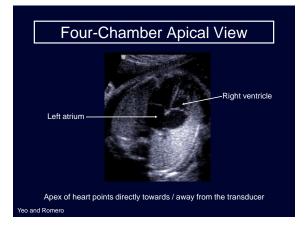

Cardiac Malposition

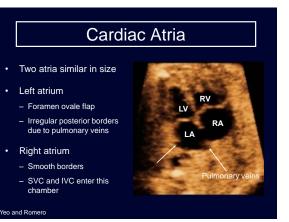
- Abnormal cardiac axis
 - Often associated with <u>intrinsic</u> complex cardiac defects and dysrhythmias
- Abnormal cardiac position or displacement of heart
 - Due to extracardiac defect

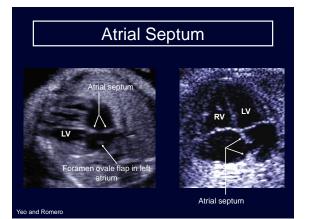

eo and Romero

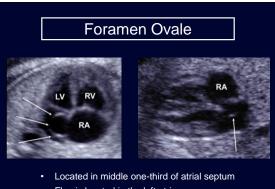

Cardiac Malposition


- Dextrocardia
 - Heart located in right side of chest, apex points to the right
- Mesocardia
 - Heart located in midchest, apex points to the midline
- Dextroposition
 - Pathologic <u>displacement</u> of heart into right thorax, apex points to the left
 - Extracardiac malformations (e.g. diaphragmatic hernia)




Normal Cardiac Structures

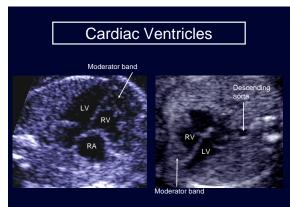


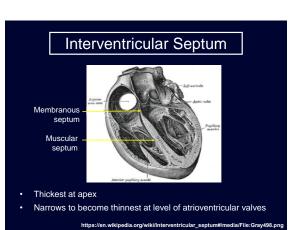


Foramen Ovale

- Umbilical venous blood entering the inferior vena cava
 preferentially streams towards the left side of the heart,
 through the foramen ovale
- Left atrial blood enters left ventricle, and then the ascending aorta
 - Most of this blood supplies the head and upper extremities of the fetus (via vessels from aortic arch)
 - Rest of the blood continues down the descending aorta

Yeo and Romero

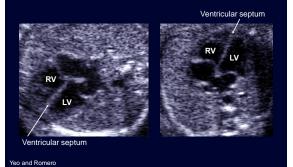

• Flap is located in the left atrium


Yeo and Romero

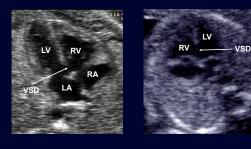
Cardiac Ventricles

- Two ventricles are approximately equal in size
 In late pregnancy, the right ventricle is slightly larger than the left ventricle
- Right ventricle
 - Coarse trabeculation
 - Moderator band at apex (looks "shorter" than left ventricle)
- · Left ventricle
 - Smooth contours
 - Conical shape
- Forms the apex of the heart

eo and Romero



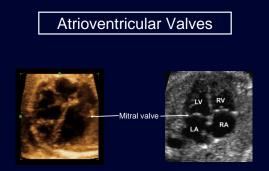
Interventricular Septum


- Should be intact from the apex of the heart to the crux
- Muscular septum (mostly)
- Membranous septum (thin, near atrioventricular valves)

Yeo and Romero

Interventricular Septum

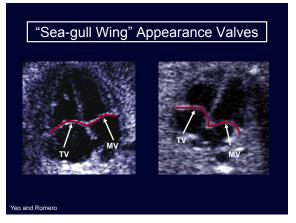
Ventricular Septal Defects



Yeo and Romero

Atrioventricular Valves

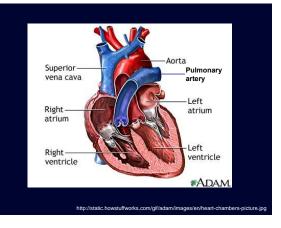

- · Two distinct valves (versus one common valve)
- Mitral, tricuspid valves
 - Always follow the respective ventricles
 - Both valves open separately and move freely
 - Two sets of "clapping hands"
 - Both valves should be the same size

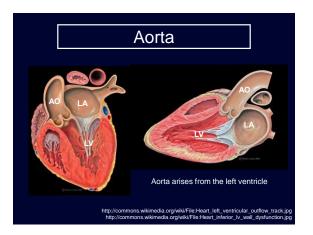

reo and Romero

Atrioventricular Valves

- Mitral, tricuspid valves
 - Septal leaflet of tricuspid valve inserts on ventricular septum closer to the cardiac apex (more "apically") than the mitral valve
 - Valves should never be at the same level
 - "Sea-gull wing" appearance (valves are normally off-set)
 - Mitral valve has attachments to the lateral wall left ventricle
 - Mitral valve has 2 leaflets, and tricuspid valve has 3 leaflets

Outflow Tracts: Aorta and Pulmonary Artery

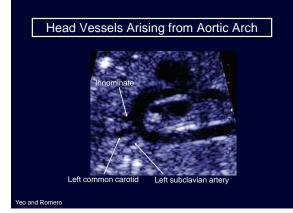

Why is Evaluation of Outflow Tract Views Important?


- Some cardiac defects (e.g. transposition of great arteries) may <u>not</u> be evident from the four-chamber view alone (e.g. transposition of great vessels)
- Complementing the four-chamber view with the outflow tract views in cardiac screening is important to improve the prenatal detection of congenital heart disease

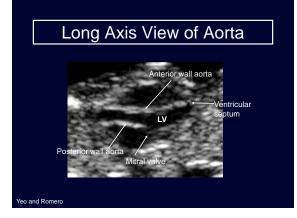
'eo and Romero

Outflow Tract Views

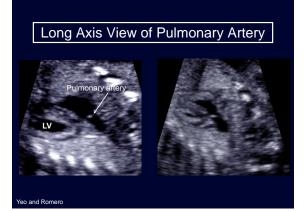
- Integral part of fetal cardiac screening
- Great vessels are approximately equal in size and <u>cross each other</u> at right angles from their origins as they <u>exit from the ventricles</u>



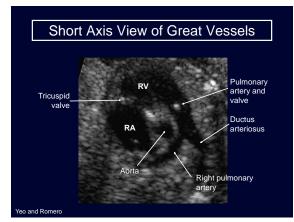
Long Axis View of Aorta


- Aorta is identified by head vessels arising from the aortic arch
- Continuity of <u>anterior wall</u> aorta with ventricular septum
- Continuity of posterior wall aorta with mitral valve
- · Aortic valve should move freely and is not thickened

Yeo and Romero


Long Axis View of Aorta

Long Axis View of Pulmonary Artery


- · Pulmonary artery arises from right ventricle
- Pulmonary artery should <u>cross</u> the aorta, and is <u>anterior</u> to the aorta
- Pulmonic valve should move freely and is not thickened
- Can measure the pulmonary annulus
 <u>Slightly larger</u> than the aortic root in fetal life

Short Axis View of Great Vessels

- Aorta appears as circular structure, with pulmonary artery coursing over it
- Pulmonary artery <u>bifurcates</u>
 Ductus arteriosus and right pulmonary artery
- Can visualize aortic, pulmonary, tricuspid valves
- · Can compare aortic and pulmonary annulus

Yeo and Romero

Short Axis View of Great Vessels

3VV and 3VT

- Visualization of these views is desirable and should be attempted as part of the routine fetal cardiac screening examination
- Both planes define three vascular structures, and their relationships with each other and with the trachea

Yeo and Romero

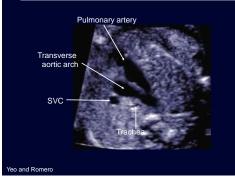
Three-vessel view (3VV) and Three vessels and trachea view (3VT)

Three-Vessel View (3VV)

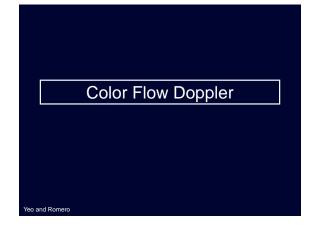
- From left to right, the vessels are:
 Pulmonary artery, aorta, SVC
- Assessment of vessel number, size, alignment, and arrangement can be made
- Pulmonary artery is most anterior vessel; SVC is most posterior
- Relative diameters <u>decrease</u> from left to right (pulmonary artery larger than aorta, and aorta larger than SVC)

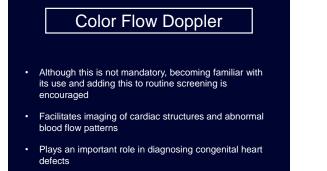
Yeo and Romero

Three-Vessel View (3VV)



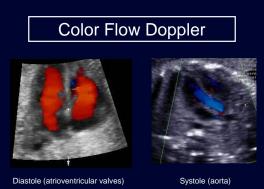
- Certain congenital heart defects associated with a normal four-chamber view are likely to have an abnormal 3VV
 - <u>Examples</u>: tetralogy of Fallot, transposition of great vessels


Three Vessels and Trachea View (3VT)

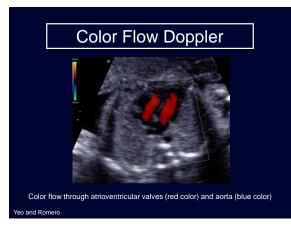

- More cephalad image
- Transverse aortic arch is better visualized, and its relationship with the trachea is emphasized
- Both ductal and aortic arches are positioned to <u>left</u> of trachea and form a "V" shape as they both join the descending aorta
- 3VT view allows detection of coarctation of aorta, right aortic arch, etc.

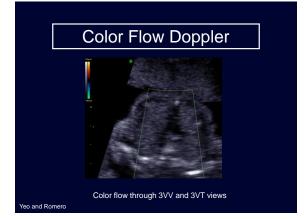
Yeo and Romero

o and Romero


Chaoui R, McEwing R. Ultrasound Obstet Gynecol 2003; 21:81-93 Carvalho JS et al. Ultrasound Obstet Gynecol 2013; 41:348-359

Color Flow Doppler


- Optimal color Doppler settings include:
 - Narrow region of interest
 - Appropriate pulse repetition frequency
 - Low color persistence
 - Adequate gain settings to display flow across valves and vessels


eo and Romero

/eo and Romero

Summary of Identification of **Fetal Cardiac Structures**

Identification of Cardiac Structures

- Right Atrium
 - SVC and IVC enter this chamber
 - Walls are smooth
- Left Atrium
 - Foramen ovale flap
 - Pulmonary veins drain into this chamber
 - Irregular posterior borders

Yeo and Romero

Yeo and Romero

Identification of Cardiac Structures

- Right Ventricle
 - Moderator band
 - Trabeculated lining
 - Always associated with respective tricuspid valve
- Left Ventricle
 - Conical shape, apex-forming
 - Smooth lining
 - Always associated with respective mitral valve

Yeo and Romero

Identification of Cardiac Structures

- Interventricular Septum
 - Mostly muscular
 - Thin, membranous portion near atrioventricular valves

Identification of Cardiac Structures

- · Tricuspid Valve
 - Three leaflets (anterior, posterior, septal)
 - Septal leaflet attachments
 - Has a more <u>apical insertion</u> on ventricular septum (vs. mitral valve)
- Mitral Valve
 - Two leaflets (anterior, posterior)
 - Attachments to lateral wall left ventricle

/eo and Romero

Identification of Cardiac Structures

- Pulmonary Artery
 - Must <u>bifurcate</u>
- Aorta
 - Must have head vessels

Conclusions
and Romero

Conclusions

- There are many important reasons to identify cardiac defects *in-utero*
- When imaging the fetal heart on ultrasound, recommend optimizing the image size and quality
- An abnormal cardiac axis and/or position may be associated with cardiac or extracardiac defects

Yeo and Romero

Conclusions

- It is important to establish situs (<u>situs solitus</u> is normal)
- Examination of the four-chamber view of the heart is more than just counting four cardiac chambers
- The foramen ovale flap is located in the left atrium

Yeo and Romero

Conclusions

- The right ventricle is identified by the moderator band
- Mitral and tricuspid valves <u>always</u> follow their respective ventricles (even if there are cardiac anomalies)
- Mitral and tricuspid valves should never be at the same level, and are <u>normally off-set</u>
 - Tricuspid valve has a more apical insertion on ventricular septum than the mitral valve

Yeo and Romero

Conclusions

- Evaluation of the outflow tracts is important because:
 - It can increase detection rates for major cardiac defects
 - Some cardiac abnormalities may not be evident from scanning the four-chamber view alone

Yeo and Romero

Conclusions

- Aorta is identified by <u>3 head vessels</u> arising from the aortic arch
- Great vessels should <u>cross</u> as they exit their respective ventricles
- Pulmonary artery is identified by its <u>bifurcation</u> into the ductus arteriosus and right pulmonary artery

Yeo and Romero

Key References

Meberg A, Otterstad JE, Froland G, Lindberg H, Sorland SJ. Outcome of congenital heart defects – a population-based study. Acta Paediatr 2000; 89:1344-1351

Carvalho JS, Allan LD, Chaoui R, Copel JA, DeVore GR, Hecher K, Lee W, Munoz H, Paladini D, Tutschek B, Yagel S. ISUOG practice guidelines (updated): sonographic screening examination of the fetal heart. Ultrasound Obstet Gynecol 2013; 41:348-359

AIUM Practice Parameter for the Performance of Obstetric Ultrasound Examinations; 2013 and renamed 2015

Yoo SJ, Lee YH, Kim ES, Ryu HM, Kim MY, Choi HK, Cho KS, Kim A. Threevessel view of the fetal upper mediastinum: an easy means of detecting abnormalities of the ventricular outflow tracts and great arteries during obstetric screening. Ultrasound Obstet Gynecol 1997; 9:173-182

	Thank You		
Yeo and Romero			