

Disclosures • none

Learning Objectives

- 1. Standard approach to normal fetal neurosonology
- 2. Understand the fetal CNS pathology with regard to stages of embryologic development
- 3. Correlate sonography with fetal MR imaging

Kline-Fath

Lecture Outline

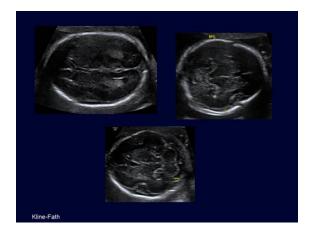
- Normal fetal sonography
- Limitations of sonography
- Fetal MRI as an adjunct
- Fetal CNS embryology with regard to pathology
 - Dorsal induction
 - Ventral induction
 - Cell proliferation, migration and organization
 - Destructive
 - Vascular

CNS anomalies account for 9% of isolated and 16% of multiple prenatal malformations

Many are associated with genetic/chromosomal abnormality

Kline-Fath

Ultrasound is the modality of choice in the imaging of disorders related to the fetus and pregnancy

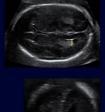

Kline-Fat

Ultrasound

- 1st Trimester
 - Transabdominal
 - Transvaginal
- 2nd and 3rd Trimester
 - Transabdominal
 - Transvaginal
 - · Cephalic presentation
 - · Higher frequency probes improve anatomic

Ultrasound

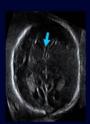
- **Imaging planes**
 - Transventricular
 - · Lateral ventricles
 - · Ventricular atrial transverse diameter at level of choroid glomus
 - Transthalamic
 - Frontal horns and septum pellucidum
 - · BPD and head circumference
 - Transcerebellar
 - Midline thalamus, cerebellar hemispheres, vermis and cisterna magna
 - Transverse cerebellar and cisterna magna

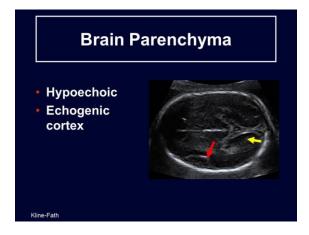

Cerebral Pathology

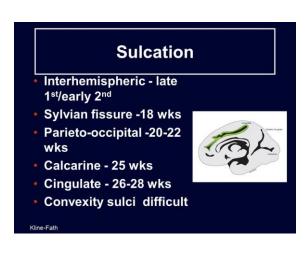
- 97% of CNS anomalies can be identified on one or more of the three standard cranial views
- 88% of CNS anomalies are identified on the tranventricular by diagnosis of enlarged ventricles

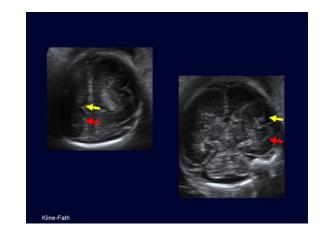
Ventricles

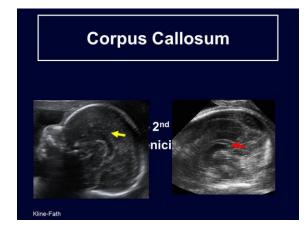
- Wall
 - echogenic, thin, smooth
- Widest level glomus choroid plexus
 - calipers should be inner aspect of the wall

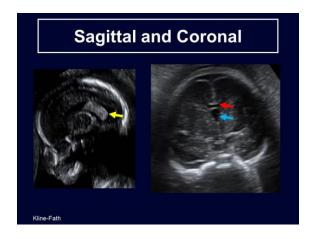

- Up to 10 mm normal

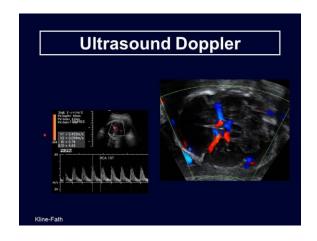


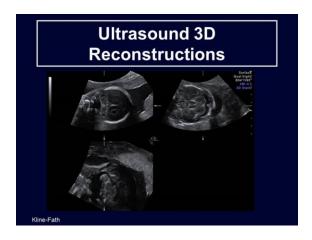

Septum Pellucidum (CSP)

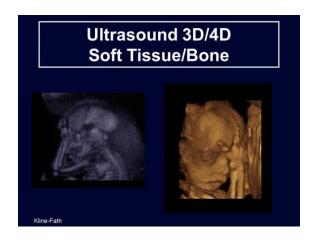

- Bridge forming corpus callosum
- 18-20 wks
- Absence
 - Agenesis of the corpus callosum
 - Septo-optic dysplasia
 - Holoprosencephaly
 - Severe hydrocephalus

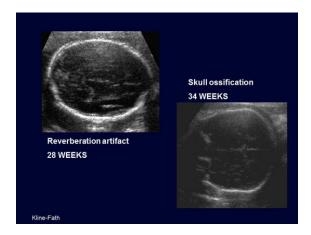












US limitations

- Soft tissue contrast
 - Germinal matrix
 - Parenchymal detail
 - Migrating cells
- Fetal positioning
- Maternal body habitus
- Amniotic fluid
- Age- calvarial ossification

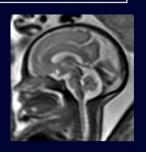
Kline-Fath

Fetal MRI

- Large field of view (FOV)
- High soft tissue contrast
- High resolution
- Not inhibited by maternal body habitus, amniotic fluid or fetal positioning

Kline-Eat

MRI led to a change in diagnosis in 32% of cases of US-detected fetal brain abnormalities, and changed counseling in 50%, and patient management in 19%


Levine D, Barnes PD, Robertson RR, et al. Fast MR imaging of fetal central

Kline-Fath

MRI Advantages in CNS Anomalies

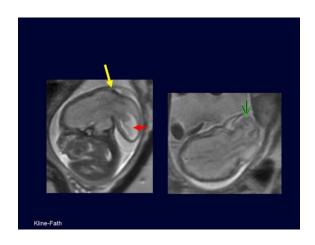
- Intracranial soft tissue definition
 - Blood, ischemia, migrational anomaly
- Corpus callosum
- Posterior fossa anatomy
- Craniocervical anatomy
- Spinal cord depiction

Kline-Fath

CNS Malformations

- Ultrasound defines a CNS anomaly
- Fetal MR imaging to increase definition of the malformation

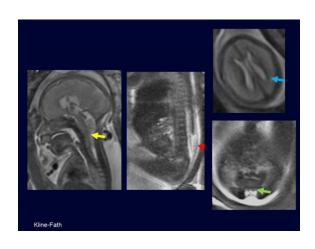
Kline-Fath

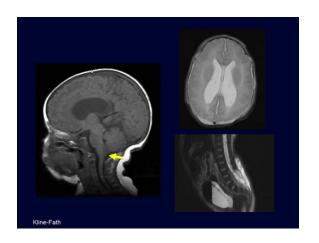

Stages of Embryonic Development Dorsal Induction Closure of neural tube Ventral Induction Brainstem Driven by genes often seen in presence of genetic disorders

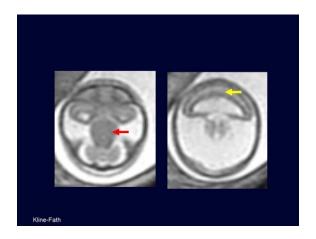
CNS Anomalies

- Dorsal Induction
 - Neural tube closure defects
- Ventral Induction
 - Midline Anomalies
 - Posterior Fossa Malformations
- Disorders of Neural Cell Proliferation and Migration
- Destructive Lesions
- Vascular

Kline-Fath

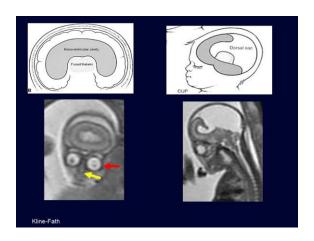


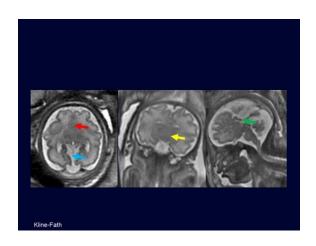




Chiari II

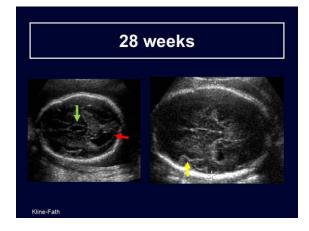
- Malformation of the hindbrain
 - Small posterior fossa
 - Cerebellum and brainstem herniate through foramen magnum
 - Compressed, elongated, low-lying 4th ventricle
 Low-lying, abnormally vertical tentorium
- Hydrocephalus
- Nearly 100% associated with neural tube defect
- **Pathology**
 - Folate deficiency

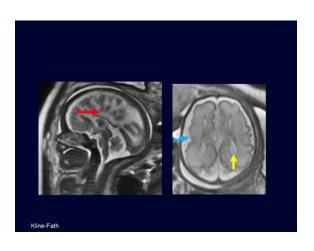




Holoprosencephaly **Ventral Induction**

- Findings
 - Single primitive ventricle
 - Fused thalami
 - Facial anomalies
 - · Eye/Nose/Lip
 - Pancake brain
 - Absent septum pellucidum

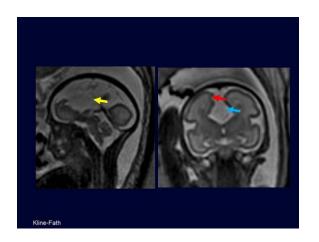


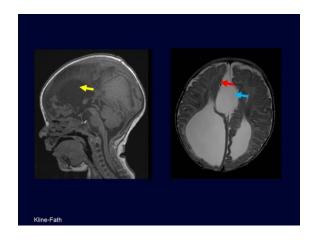


Holoprosencephaly

- Failure of cleavage of the prosencephalon (cerebral hemispheres)
 - Alobar
 - Semilobar
 - Lobar
 - Middle interhemispheric fusion
- 1 per 16,000 newborns
- High intrauterine fatality
- Genetic Chromosome 11
 - Trisomy 13 (50-75%)

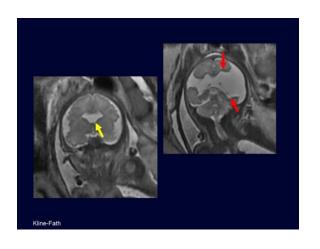
Kline-Fath

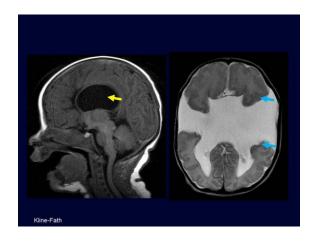



Agenesis of Corpus Callosum Ventral Induction

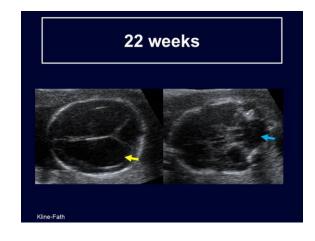
- Ventriculomegaly
 - Colpocephaly
 - Frontal horn deformity "moose head"
- Absence of septum pellucidum
- Increased separation of hemispheres
- Upward displaced third ventricle
- Midline cyst or other lesion
- Absence of the pericallosal artery

(line-Fath




Agenesis of Corpus Callosum

- .3 to .7% population
- Etiology
 - Genetic (Aicardi sydrome)
 - Teratogens (alcohol, valproate, cocaine, rubella and influenza virus)
- Associations
 - Lipomas
 - Interhemispheric cyst
- Increased anomalies, worse neurologic outcome

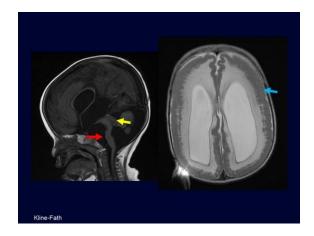

Kline-Fath

34 weeks



Septooptic Dysplasia Ventral Induction De Morsier syndrome Key findings Hypoplasia optic nerves Absent septum pellucidum Hypothalamic-pituitary dysfunction Other cerebral anomalies Schizencephaly-bilateral or unilateral full surface clefts of cortical mantle Prognosis Sudden death with pituitary dysfunction Severity of brain findings

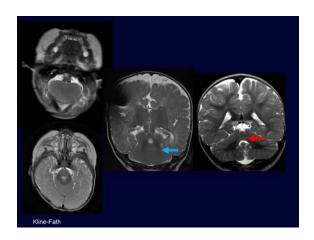




Vermian Anomalies/Posterior Fossa **Ventral Induction**

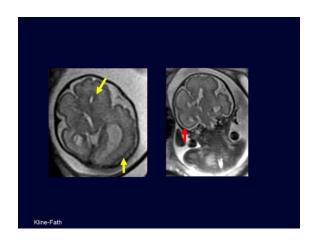
- Malformation (1 per 30,000 birth)
 - Cystic dilatation of the fourth ventricle
 - Dysgenesis of cerebellar vermis
- High position of the tentorium
- Etiologies
- Genetic
- Teratogens (viral, alcohol, diabetes)
 2/3 associated CNS/extracranial anomalies
- - Worse outcome
- Postnatal mortality 35%

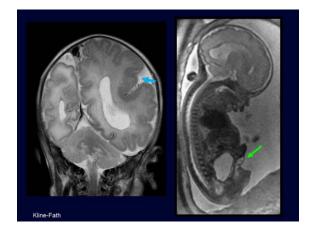



Walker Warburg

- Congenital Muscular Dystrophy
 - Lissencephaly
 - Hydrocephalus
 - Kink at the mesencephalicpontine junction; pontine hypogenesis
- Cerebellar hypoplasia and dysplasia
- Severe hypotonia
- Eye malformation

Aqueductal Stenosis Ventral Induction

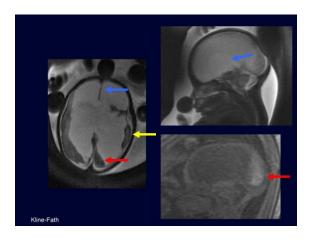

- Severe >15mm
- 1 in 2000
- Sporadic
 - Infection
 - Hemorrhage
 - Tumors
- Rhomboencephalosynapsis
 - Fusion of cerebellar hemispheres & vermian agenesis
- Genetic (X-linked 5%)
- Prognosis poor (10% normal development)

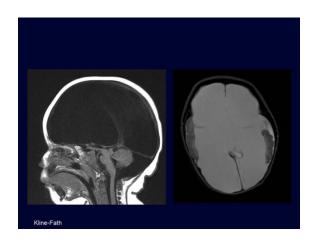

Kline-Fath

Neuronal Proliferation/Migration

- Proliferation
 - Hemimegalencephaly- hamartomatous overgrowth defect in neuronal proliferation and migration.
- Migration
 - Lissencephaly smooth brain
 - Schizencephaly full thickness gray matter line clefts of the cerebral mantle

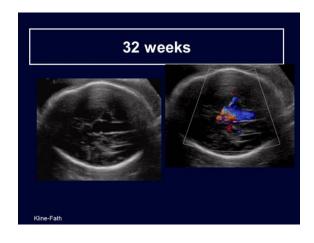
25 weeks

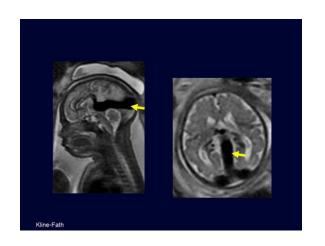


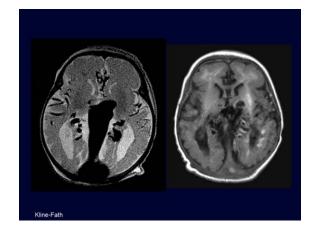


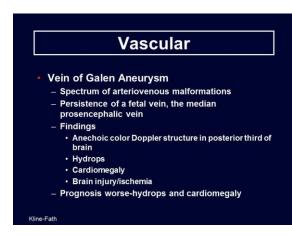
Hemimegalencephaly **Neuronal Proliferation/Migration**

- Hamartomatous overgrowth of part/all of a hemisphere
- Defect of cell organization/neuronal migration
- Imaging
 - Enlarged dysplastic hemisphere Large lateral ventricle
- Associated syndromes
 - Hemiovergrowth
- Poor outcome intractable seizure/hemiparesis








Intracranial hemorrhage Porencephaly Large defect that communicates with ventricular system Hydranencephaly Absence of cerebral hemispheres, replaced by sac like CSF structures 1 to 2.5 per 10,000 Occlusion of carotid vessels/toxic exposure

Lethal

References

- Kline-Fath BM, Bulas DI, Bahado-Singh R. Fundamental and Advanced Fetal Imaging. China. Wolters Kluwer: 2015;1-48 and 340-450.
- Nyberg DA. Recommendations for obstetric sonography in the evaluation of the fetal cranium. *Radiology*. 1989;172:309–311.
 Filly RA, Cardoza JD, Goldstein RB, et al. Detection of fetal central nervous system anomalies: a practical level of effort for a routine sonogram. *Radiology*. 1989; 172: 403-408
 Pilu G, Hobbins JC. Sonography of fetal cerebrospinal anomalies. *Prenat Diagn*.2002;22:321–330.